# **1020 Diploma in Mechanical Engineering**

# Program Outcomes (PO's)

POs are statements that describe what students are expected to know and be able to do upon graduating from the program. These relate to the skills, knowledge, analytical ability, attitude, and behavior that students acquire through the program.

The POs essentially indicate what the students can do from subject-wise knowledge acquired by them during the program. As such, POs define the professional profile of an engineering diploma graduate.

NBA has defined the following seven POs for an Engineering diploma graduate:

**P01:** Basic and Discipline-specific knowledge: Apply knowledge of basic mathematics, science and engineering fundamentals and an engineering specialization to solve the engineering problems.

**P02:** Problem analysis: Identify and analyse well-defined engineering problems using codified standard methods.

**P03:** Design/ development of solutions: Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.

**PO4:** Engineering Tools, Experimentation, and Testing: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.

**P05:** Engineering practices for society, sustainability and environment: Apply appropriate technology in the context of society, sustainability, environment and ethical practices.

**P06:** Project Management: Use engineering management principles individually, as a team member or as a leader to manage projects and effectively communicate about well-defined engineering activities.

**P07:** Life-long learning: Ability to analyse individual needs and engage in updating in the context of technological changes.

# **Credit Distribution**

| Semester     | No of Courses | Periods | Credits |
|--------------|---------------|---------|---------|
| Semester I   | 8             | 640     | 20      |
| Semester II  | 9             | 640     | 20      |
| Semester III | 8             | 640     | 21      |
| Semester IV  | 7             | 640     | 19      |
| Semester V   | 8             | 635#    | 22      |
| Semester VI  | 3             | 660     | 18      |
|              |               | Total   | 120     |

# Industrial Training during Summer vacation for Two Weeks has to be completed to earn the required two credits.

|    | Semester I                  |                                |            |                                              |       |        |        |           |  |  |  |
|----|-----------------------------|--------------------------------|------------|----------------------------------------------|-------|--------|--------|-----------|--|--|--|
| #  | Course Category             | Course Type                    | Code       | Course Title                                 | L-T-P | Period | Credit | End Exam  |  |  |  |
| 1  | Humanities & Social Science | Theory                         | 1000231110 | Tamil Marabu                                 | 2-0-0 | 30     | 2      | Theory    |  |  |  |
| 2  | Basic Science               | Theory                         | 1000231230 | Basic Mathematics                            | 3-1-0 | 60     | 4      | Theory    |  |  |  |
| 3  | Basic Science               | Practicum                      | 1000231330 | Basic Physics                                | 2-0-2 | 60     | 3      | Theory    |  |  |  |
| 4  | Basic Science               | Practicum                      | 1000231430 | Basic Chemistry                              | 2-0-2 | 60     | 3      | Theory    |  |  |  |
| 5  | Engineering Science         | Practical                      | 1000231520 | Digital Workplace Skills                     | 0-0-4 | 60     | 2      | Practical |  |  |  |
| 6  | Humanities & Social Science | Practicum                      | 1000231640 | Communicative English I                      | 1-0-2 | 45     | 2      | Practical |  |  |  |
| 7  | Engineering Science         | Practicum                      | 1000231740 | Basic Workshop Practices                     | 1-0-2 | 45     | 2      | Practical |  |  |  |
| 8  | Open Elective               | Advanced Skill Certification   | 1000231860 | Basic English for Employability              | 0-0-4 | 60     | 2      | Practical |  |  |  |
| 9  | Humanities & Social Science | Integrated Learning Experience | 1000231880 | Growth Lab                                   | -     | 15     | 0      | -         |  |  |  |
| 10 | Audit Course                | Integrated Learning Experience | 1000231881 | Induction Program - I                        | -     | 40     | 0      | -         |  |  |  |
| 11 | Audit Course                | Integrated Learning Experience | 1000231882 | I&E/ Club Activity/ Community<br>Initiatives | -     | 30     | 0      | -         |  |  |  |
| 12 | Audit Course                | Integrated Learning Experience | 1000231883 | Shop Floor Immersion                         | -     | 8      | 0      | -         |  |  |  |
| 13 | Audit Course                | Integrated Learning Experience | 1000231884 | Student-Led Initiative                       | -     | 22     | 0      | -         |  |  |  |
| 14 | Audit Course                | Integrated Learning Experience | 1000231886 | Health & Wellness                            | -     | 30     | 0      | -         |  |  |  |
|    | Test & Revisions 60 NA      |                                |            |                                              |       |        |        |           |  |  |  |
|    | Library 15                  |                                |            |                                              |       |        |        |           |  |  |  |
|    | Total 640 20                |                                |            |                                              |       |        |        |           |  |  |  |

|    | Semester II                 |                                |            |                                               |       |        |        |           |  |  |  |
|----|-----------------------------|--------------------------------|------------|-----------------------------------------------|-------|--------|--------|-----------|--|--|--|
| #  | Course Category             | Course Type                    | Code       | Course Title                                  | L-T-P | Period | Credit | End Exam  |  |  |  |
| 1  | Humanities & Social Science | Theory                         | 1000232110 | Tamils and Technology                         | 2-0-0 | 30     | 2      | Theory    |  |  |  |
| 2  | Program Core                | Theory                         | 1020232210 | Basics of Mechanical Engineering              | 3-0-0 | 45     | 3      | Theory    |  |  |  |
| 3  | Engineering Science         | Lab                            | 1000232320 | Drafting Practices                            | 0-0-4 | 60     | 2      | Practical |  |  |  |
| 4  | Basic Science               | Practicum                      | 1000232440 | Applied Mathematics – I                       | 1-0-4 | 75     | 3      | Practical |  |  |  |
| 5  | Basic Science               | Practicum                      | 1000232540 | Applied Physics – I                           | 1-0-2 | 45     | 2      | Practical |  |  |  |
| 6  | Basic Science               | Practicum                      | 1000232640 | Applied Chemistry – I                         | 1-0-2 | 45     | 2      | Practical |  |  |  |
| 7  | Engineering Science         | Practicum                      | 1000232740 | Basic Engineering Practices                   | 1-0-2 | 45     | 2      | Practical |  |  |  |
| 8  | Humanities & Social Science | Practicum                      | 1000232840 | Communicative English – II                    | 1-0-2 | 45     | 2      | Practical |  |  |  |
| 9  | Open Elective               | Advanced Skill Certification   | 1000232860 | Advanced Skills Certification - II            | 1-0-2 | 45     | 2      | NA        |  |  |  |
| 10 | Humanities & Social Science | Integrated Learning Experience | 1000232880 | Growth Lab                                    | -     | 30     | 0      | -         |  |  |  |
| 11 | Audit Course                | Integrated Learning Experience | 1000232882 | I&E/ Club Activity / Community<br>Initiatives | -     | 30     | 0      | -         |  |  |  |
| 12 | Audit Course                | Integrated Learning Experience | 1000232883 | Shop Floor Immersion                          | -     | 8      | 0      | -         |  |  |  |
| 13 | Audit Course                | Integrated Learning Experience | 1000232884 | Student Led Initiative                        | -     | 24     | 0      | -         |  |  |  |
| 14 | Audit Course                | Integrated Learning Experience | 1000232885 | Emerging Technology Seminars                  | -     | 8      | 0      | -         |  |  |  |
| 15 | Audit Course                | Integrated Learning Experience | 1000232886 | Health & Wellness                             | -     | 30     | 0      | -         |  |  |  |
|    | Test & Revisions 60 NA      |                                |            |                                               |       |        |        |           |  |  |  |
|    | Library 15                  |                                |            |                                               |       |        |        |           |  |  |  |
|    | Total 640 20                |                                |            |                                               |       |        |        |           |  |  |  |

|                     | Semester III                   |                                |            |                                           |       |        |        |           |  |  |  |
|---------------------|--------------------------------|--------------------------------|------------|-------------------------------------------|-------|--------|--------|-----------|--|--|--|
| #                   | Course Category                | Course Type                    | Code       | Course Title                              | L-T-P | Period | Credit | End Exam  |  |  |  |
| 1                   | Program Core                   | Theory                         | 1020233110 | Manufacturing Process                     | 3-0-0 | 45     | 3      | Theory    |  |  |  |
| 2                   | Program Core                   | Practicum                      | 1020233230 | Strength of Materials                     | 3-0-2 | 75     | 4      | Theory    |  |  |  |
| 3                   | Program Core                   | Practical/Lab                  | 1020233320 | Workshop Practices                        | 0-0-4 | 60     | 2      | Practical |  |  |  |
| 4                   | Program Core                   | Practicum                      | 1020233440 | Industrial drives and control             | 1-0-4 | 75     | 3      | Practical |  |  |  |
| 5                   | Program Core                   | Practicum                      | 1020233540 | Production Drawing and Modeling           | 1-0-4 | 75     | 3      | Practical |  |  |  |
| 6                   | Program Core                   | Practicum                      | 1020233640 | Machine Tool Technology                   | 1-0-4 | 75     | 3      | Practical |  |  |  |
| 7                   | Open Elective                  | Advanced Skill Certification   | 1020233760 | Advanced Skills Certification - III       | 1-0-2 | 60     | 2      | NA        |  |  |  |
| 8                   | Humanities & Social<br>Science | Integrated Learning Experience | 1020233880 | Growth Lab                                | -     | 30     | 0      | -         |  |  |  |
| 9                   | Audit Course                   | Integrated Learning Experience | 1020233881 | Induction Program - II                    | -     | 16     | 0      | -         |  |  |  |
| 10                  | Audit Course                   | Integrated Learning Experience | 1020233882 | I&E/ Club Activity/ Community Initiatives | -     | 16     | 0      | -         |  |  |  |
| 11                  | Audit Course                   | Integrated Learning Experience | 1020233883 | Shop floor Immersion                      | -     | 8      | 0      | -         |  |  |  |
| 12                  | Audit Course                   | Integrated Learning Experience | 1020233884 | Student-Led Initiative                    | -     | 22     | 0      | -         |  |  |  |
| 13                  | Audit Course                   | Integrated Learning Experience | 1020233885 | Emerging Technology Seminars              | -     | 8      | 0      | -         |  |  |  |
| 14                  | Audit Course                   | Integrated Learning Experience | 1020233886 | Health & Wellness                         | 0-0-2 | 30     | 1      | -         |  |  |  |
| Test & Revisions 30 |                                |                                |            |                                           |       |        |        | NA        |  |  |  |
| Library             |                                |                                |            |                                           |       |        |        |           |  |  |  |
|                     | Total 640 21                   |                                |            |                                           |       |        |        |           |  |  |  |

|    | Semester IV         |                                |                         |                                                 |       |     |        |           |  |  |  |
|----|---------------------|--------------------------------|-------------------------|-------------------------------------------------|-------|-----|--------|-----------|--|--|--|
| #  | Course Category     | Course Type                    | Code Course Title L-T-P |                                                 |       |     | Credit | End Exam  |  |  |  |
| 1  | Program Core        | Theory                         | 1020234110              | Advanced Manufacturing Technology               | 3-0-0 | 45  | 3      | Theory    |  |  |  |
| 2  | Program Core        | Practicum                      | 1020234230              | Fluid Mechanics                                 | 2-0-2 | 60  | 3      | Theory    |  |  |  |
| 3  | Program Core        | Practical/Lab                  | 1020234320              | Advanced Manufacturing Technology<br>Practical  | 0-0-4 | 60  | 2      | Practical |  |  |  |
| 4  | Program Core        | Practicum                      | 1020234440              | Sensors and Actuators                           | 1-0-4 | 75  | 3      | Practical |  |  |  |
| 5  | Program Core        | Practicum                      | 1020234540              | Heat power engineering                          | 1-0-4 | 75  | 3      | Practical |  |  |  |
| 6  | Program Core        | Practicum                      | 1020234640              | Metrology and Measurements                      | 1-0-4 | 75  | 3      | Practical |  |  |  |
| 7  | Open Elective       | Advanced Skill Certification   | 1020234760              | Advanced Skills Certification - IV              | 1-0-2 | 60  | 2      | NA        |  |  |  |
| 8  | Audit Course        | Integrated Learning Experience | 1020234882              | I&E/ Club Activity/ Community Initiatives       | -     | 30  | 0      | -         |  |  |  |
| 9  | Audit Course        | Integrated Learning Experience | 1020234883              | Shop floor Immersion                            | -     | 8   | 0      | -         |  |  |  |
| 10 | Audit Course        | Integrated Learning Experience | 1020234884              | Student-Led Initiative                          | -     | 24  | 0      | -         |  |  |  |
| 11 | Audit Course        | Integrated Learning Experience | 1020234885              | Emerging Technology Seminars                    | -     | 8   | 0      | -         |  |  |  |
| 12 | Audit Course        | Integrated Learning Experience | 1020234886              | Health & Wellness                               | -     | 30  | 0      | -         |  |  |  |
| 13 | Audit Course        | Integrated Learning Experience | 1020234887              | Special Interest Groups (Placement<br>Training) | -     | 30  | 0      | -         |  |  |  |
|    | Test & Revisions 30 |                                |                         |                                                 |       |     |        |           |  |  |  |
|    | Library 30          |                                |                         |                                                 |       |     |        |           |  |  |  |
|    |                     |                                |                         |                                                 | Total | 640 | 19     |           |  |  |  |

|    | Semester V                     |                                |            |                                                                             |       |        |        |           |  |  |
|----|--------------------------------|--------------------------------|------------|-----------------------------------------------------------------------------|-------|--------|--------|-----------|--|--|
| #  | Course Category                | Course Type                    | Code       | Course Title                                                                | L-T-P | Period | Credit | End Exam  |  |  |
| 1  | Program Core                   | Theory                         | 1020235110 | Elements of Machine Design                                                  | 3-0-0 | 45     | 3      | Theory    |  |  |
| 2  | Program Core                   | Practicum                      | 1020235230 | Industrial Engineering and Management                                       | 3-0-2 | 75     | 4      | Theory    |  |  |
| 3  | Program Elective               | Practicum                      |            | Elective - I                                                                | 2-0-2 | 60     | 3      | Theory    |  |  |
| 4  | Program Core                   | Practicum                      | 1020235440 | Maintenance, Repairs & Service                                              | 1-0-4 | 75     | 3      | Practical |  |  |
| 5  | Program Elective               | Practicum                      |            | Elective - II                                                               | 1-0-4 | 75     | 3      | Practical |  |  |
| 6  | Humanities & Social<br>Science | Practicum                      | 1020235654 | Innovation & Startup                                                        | 1-0-2 | 45     | 2      | Project   |  |  |
| 7  | Project/Internship             | Project/Internship             | 1020235773 | Industrial Training*<br>[Summer Vacation - 90 Hours]<br>/ Mini Project (SW) | -     | -      | 2      | Project   |  |  |
| 8  | Open Elective                  | Advanced Skill Certification   | 1020235860 | Advanced Skills Certification - V                                           | 1-0-2 | 60     | 2      | NA        |  |  |
| 9  | Audit Course                   | Integrated Learning Experience | 1020235981 | Induction program - III                                                     | -     | 40     | 0      | -         |  |  |
| 10 | Audit Course                   | Integrated Learning Experience | 1020235984 | Student-Led Initiative                                                      | -     | 30     | 0      | -         |  |  |
| 11 | Audit Course                   | Integrated Learning Experience | 1020235986 | Health & Wellness                                                           | -     | 30     | 0      | -         |  |  |
| 12 | Audit Course                   | Integrated Learning Experience | 1020235987 | Special Interest Groups (Placement<br>Training)                             | -     | 40     | 0      | -         |  |  |
|    | Test & Revisions 45            |                                |            |                                                                             |       |        |        |           |  |  |
|    | Library 15                     |                                |            |                                                                             |       |        |        |           |  |  |
|    | Total 635 22                   |                                |            |                                                                             |       |        |        |           |  |  |

|   | Semester VI                      |                                                   |                          |                                                                              |        |          |    |           |  |  |
|---|----------------------------------|---------------------------------------------------|--------------------------|------------------------------------------------------------------------------|--------|----------|----|-----------|--|--|
| # | Course Category                  | urse Category Course Type Code Course Title L-T-P |                          | Period                                                                       | Credit | End Exam |    |           |  |  |
| 1 | Open Elective                    | Theory                                            |                          | Electives - III (Pathway)                                                    | 3-0-0  | 45       | 3  | Theory    |  |  |
| 2 | Open Elective                    | Practicum                                         |                          | Elective - IV (Specialisation)                                               | 1-0-4  | 75       | 3  | Practical |  |  |
| 3 | Industrial Training /<br>Project | Project/Internship                                |                          | In-house Project / Internship /<br>Fellowship **<br>Industrial Training (SW) | -      | 540      | 12 | Project   |  |  |
|   |                                  |                                                   |                          |                                                                              | Total  | 660      | 18 |           |  |  |
| 3 | Industrial Training /<br>Project | Project/Internship                                | 1020236351               | Internship                                                                   | -      | 540      | 12 | Project   |  |  |
| 3 | Industrial Training /<br>Project | Project/Internship                                | 1020236353               | Fellowship                                                                   | -      | 540      | 12 | Project   |  |  |
| 3 | Industrial Training /<br>Project | Project/Internship                                | 1020236374               | In-house Project                                                             | -      | 540      | 12 | Project   |  |  |
| 3 | Industrial Training /<br>Project | Project/Internship                                | 2020234274<br>2020237274 | Industrial Training (SW)                                                     | -      | 540      | 12 | Project   |  |  |

Note: \*\* Every student should select any one from the In-House Project or Internship or Fellowship. The guidelines given have to be followed. For the Sandwich programme, Industrial Training in the fourth and seventh semester will be given. The guidelines given have to be followed.

|     | Elective - I         |                                |                |                                            |          |           |         |           |  |  |
|-----|----------------------|--------------------------------|----------------|--------------------------------------------|----------|-----------|---------|-----------|--|--|
| #   | Course Category      | Course Type                    | Code           | Course Title                               | L-T-P    | Period    | Credit  | End Exam  |  |  |
| 1   | Program Elective     | Practicum                      | 1020235331     | Modern QC Tools                            | 2-0-2    | 60        | 3       | Theory    |  |  |
| 2   | Program Elective     | Practicum                      | 1020235332     | Composite Materials                        | 2-0-2    | 60        | 3       | Theory    |  |  |
| 3   | Program Elective     | Practicum                      | 1020235333     | Refrigeration and Air-Conditioning         | 2-0-2    | 60        | 3       | Theory    |  |  |
| 4   | Program Elective     | Practicum                      | 1020235334     | Value Engineering                          | 2-0-2    | 60        | 3       | Theory    |  |  |
| 5   | Program Elective     | Practicum                      | 1020235335     | Green Manufacturing                        | 2-0-2    | 60        | 3       | Theory    |  |  |
| 6   | Program Elective     | Practicum                      | 1020235336     | Lean Manufacturing                         | 2-0-2    | 60        | 3       | Theory    |  |  |
| 7   | Program Elective     | Practicum                      |                | Inter discipline course #                  | 2-0-2    | 60        | 3       | Theory    |  |  |
| # C | Courses from other p | rogrammes with the same credit | can be conside | ered after proper approval from the Chairm | an Board | of Examin | ations. |           |  |  |
|     |                      |                                |                | Elective - II                              |          |           |         |           |  |  |
| #   | Course Category      | Course Type                    | Code           | Course Title                               | L-T-P    | Period    | Credit  | End Exam  |  |  |
| 1   | Program Elective     | Practicum                      | 1020235541     | CNC Programming                            | 1-0-4    | 75        | 3       | Practical |  |  |
| 2   | Program Elective     | Practicum                      | 1020235542     | Systems Applications and Product (SAP)     | 1-0-4    | 75        | 3       | Practical |  |  |
| 3   | Program Elective     | Practicum                      | 1020235543     | Industrial IoT                             | 1-0-4    | 75        | 3       | Practical |  |  |
| 4   | Program Elective     | Practicum                      | 1020235544     | Advanced Welding Technologies              | 1-0-4    | 75        | 3       | Practical |  |  |
| 5   | Program Elective     | Practicum                      | 1020235545     | Industrial Robotics                        | 1-0-4    | 75        | 3       | Practical |  |  |
| 6   | Program Elective     | Practicum                      | 1020235546     | HVAC Systems and Components                | 1-0-4    | 75        | 3       | Practical |  |  |
| 7   | Program Elective     | Practicum                      | 1020235547     | Automobile Technology                      | 1-0-4    | 75        | 3       | Practical |  |  |

|   | Elective - III (Pathway)       |                                            |            |                                  |       |    |        |          |  |  |  |
|---|--------------------------------|--------------------------------------------|------------|----------------------------------|-------|----|--------|----------|--|--|--|
| # | Course Category                | rse Category Course Type Code Course Title |            |                                  |       |    | Credit | End Exam |  |  |  |
| 1 | Elective   Higher<br>Education | Theory                                     | 6000236111 | Advanced Engineering Mathematics | 3-0-0 | 45 | 3      | Theory   |  |  |  |
| 2 | Elective  <br>Entrepreneurship | Theory                                     | 6000236112 | Entrepreneurship                 | 3-0-0 | 45 | 3      | Theory   |  |  |  |
| 3 | Elective  <br>Technocrats      | Theory                                     | 6000236113 | Project Management               | 3-0-0 | 45 | 3      | Theory   |  |  |  |
| 4 | Elective  <br>Technocrats      | Theory                                     | 6000236114 | Finance Fundamentals             | 3-0-0 | 45 | 3      | Theory   |  |  |  |
| 5 | Elective  <br>Technologists    | Theory                                     | 1020236115 | Industry 4.0                     | 3-0-0 | 45 | 3      | Theory   |  |  |  |
| 6 | Elective  <br>Technologists    | Theory                                     | 1020236116 | Additive Manufacturing           | 3-0-0 | 45 | 3      | Theory   |  |  |  |
| 7 | Elective  <br>Technologists    | Theory                                     | 1020236117 | Power Plant Engineering          | 3-0-0 | 45 | 3      | Theory   |  |  |  |
| 8 | Elective   Open<br>elective    | Theory                                     |            | Online Elective Courses \$       | 3-0-0 | 45 | 3      | Theory   |  |  |  |

\$ Online courses with the same credit available in AICTE, SWAYAM, NPTEL and reputed Institutions with the proper evaluation system and certification can be considered after proper approval from the Chairman Board of Examinations.

|   | Elective - IV (Specialization) |             |            |                              |       |        |        |           |  |  |  |
|---|--------------------------------|-------------|------------|------------------------------|-------|--------|--------|-----------|--|--|--|
| # | Course Category                | Course Type | Code       | Course Title                 | L-T-P | Period | Credit | End Exam  |  |  |  |
| 1 | Elective                       | Practicum   | 1020236241 | MEP Equipment Servicing      | 1-0-4 | 75     | 3      | Practical |  |  |  |
| 2 | Elective                       | Practicum   | 1020236242 | Maintenance of Machine Tools | 1-0-4 | 75     | 3      | Practical |  |  |  |
| 3 | Elective                       | Practicum   | 1020236243 | Non-Destructive Testing      | 1-0-4 | 75     | 3      | Practical |  |  |  |
| 4 | Elective                       | Practicum   | 1020236244 | Process Automation           | 1-0-4 | 75     | 3      | Practical |  |  |  |
| 5 | Elective                       | Practicum   | 1020236245 | Product Design & Development | 1-0-4 | 75     | 3      | Practical |  |  |  |
| 6 | Elective                       | Practicum   | 1020236246 | Electric Vehicle Technology  | 1-0-4 | 75     | 3      | Practical |  |  |  |
| 7 | Elective                       | Practicum   | 1020236247 | Reverse Engineering          | 1-0-4 | 75     | 3      | Practical |  |  |  |
| 8 | Elective                       | Practicum   | 1020236248 | Green Energy & Engineering   | 1-0-4 | 75     | 3      | Practical |  |  |  |

#### Introduction

Generally, a manufacturing process involves products to be manufactured from raw materials. In order to achieve the objectives, certain processes consisting of many operations and steps need to be executed. The manufacturing process begins with the creation of the materials from which the design is made. These materials are then modified through the manufacturing process to become the required part. This will provide the students an opportunity to skill themselves in various manufacturing techniques available in the industry and also how to select the materials for engineering applications.

#### **Course Objectives**

The objective of this course is to enable the student,

- To classify the different types of pattern materials, Moulding, Casting
- To explain the different types of welding process
- To study the various types of Hot Working and Press Working process
- To learn the various manufacturing metal by powder metallurgy and Heat Treatment process
- To study various types of Work and tool holding devices and power tools applications.

#### **Course Outcomes**

CO1: Discuss the various casting techniques used in foundry.

CO2: Identify appropriate joining techniques and defects in weld components.

CO3: Illustrate various forging and press working processes.

CO4: Classify different powder metallurgy and heat treatment processes.

CO5: Describe various work holding, tool holding and power tools used in shop floor.

#### **Pre-requisites**

Nil



#### CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   |     |     |     | 1   |     |     |
| C02     | 3   |     |     |     |     |     |     |
| C03     | 3   |     |     |     |     |     |     |
| C04     | 3   |     |     |     |     |     |     |
| C05     | 2   |     |     | 2   |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy

- It is advised that teachers take steps to pique pupils' attention and boost their curiosity to learn.
- Implement task-based learning activities where students work on specific tasks or projects.
- Incorporate technology tools and resources, such as online platforms, interactive multimedia, and virtual communication tools, to enhance engagement and provide additional practice opportunities.
- Incorporate formative and summative assessments to gauge student progress and provide targeted feedback.
- Throughout the course, a demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- All demonstrations/Hand-on practices may be followed in the real environment as far as possible.



THEORY

| L | Т | Ρ | С |
|---|---|---|---|
| З | 0 | 0 | 3 |

### **Assessment Methodology**

|                       | C                                                                                                            | ontinuous Asses | sment (40 marks      | s)                     | End Semester              |
|-----------------------|--------------------------------------------------------------------------------------------------------------|-----------------|----------------------|------------------------|---------------------------|
|                       | CA1                                                                                                          | CA2             | CA3                  | CA4                    | Examination<br>(60 marks) |
| Mode                  | Written test<br>(Two units) Written test<br>(Another Two<br>units) Offline) Quiz<br>MCQ<br>(Online /<br>Exam |                 | Model<br>Examination | Written<br>Examination |                           |
| Duration              | 2 Periods                                                                                                    | 2 Periods       | 1 Hour               | 3 Hours                | 3 Hours                   |
| Exam Marks            | Exam Marks 50                                                                                                |                 | 60                   | 100                    | 100                       |
| Converted to          | Converted to 15                                                                                              |                 | 15 5                 |                        | 60                        |
| Marks                 | 15                                                                                                           |                 | 5                    | 20                     | 60                        |
| Tentative<br>Schedule | 6th Week 12th Week 13-14th Week 16th Wee                                                                     |                 | 16th Week            |                        |                           |

**CA1 and CA2:** Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

**CA3:** 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept



| 1020233110 |                       | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| THEORY     | MANUFACTURING PROCESS | 3 | 0 | 0 | 3 |

for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

**CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

#### **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

#### **Syllabus Contents**

| Unit I                                                                          | FOUNDRY TECHNOLOGY                                                          |          |  |  |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------|--|--|
| Chapter 1                                                                       | .1: Foundry: Pattern – Pattern Materials – types – single piece (solid) and | 9        |  |  |
| split type only – allowances – moulding – moulding tools and                    |                                                                             |          |  |  |
| boxes – moulding sands – classifications and properties-core - CO2core making.  |                                                                             |          |  |  |
| Melting o                                                                       | f cast iron - cupola furnace - Melting of nonferrous metals - crucible      |          |  |  |
| furnace m                                                                       | elting of steel – Electric arc furnaces.                                    |          |  |  |
|                                                                                 |                                                                             |          |  |  |
| Chapter 1                                                                       | .2: Casting: Definition - sand casting using green sand and dry sand -      |          |  |  |
| gravity di                                                                      | e casting - pressure die casting - hot and cold chamber processes -         |          |  |  |
| centrifuga                                                                      | I casting - continuous casting- defects in casting - causes and remedies    |          |  |  |
| -cleaning                                                                       | of casting and safety practices in foundry                                  |          |  |  |
| Unit II                                                                         | WELDING TECHNOLOGY                                                          | <u> </u> |  |  |
| Chapter 2                                                                       | 2.1: Arc Welding and Gas welding: - Arc welding definition – arc welding    | 9        |  |  |
| equipment – arc welding methods – Carbon arc, metal arc, metal inert gas (MIG), |                                                                             |          |  |  |
| tungsten i                                                                      | nert gas (TIG).                                                             |          |  |  |



| Gas Weld                                                                             | ling: Definition - Gas Welding Equipment - Oxy and acetylene welding -              |   |  |  |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---|--|--|
| Three type                                                                           | es of flame.                                                                        |   |  |  |
| Chapter 2                                                                            | 2.2: Resistance welding and welding related processes: Resistance welding           |   |  |  |
| – definitio                                                                          | on – classification of resistance welding – butt – spot –seam -projection           |   |  |  |
| welding - welding related processes - oxy and acetylene cutting - arc cutting - hard |                                                                                     |   |  |  |
| facing - b                                                                           | ronze welding - soldering and brazing.                                              |   |  |  |
| Destructiv                                                                           | ve and nondestructive types of tests - magnetic particle test – Die                 |   |  |  |
| Penetrant                                                                            | test - radiographic and ultrasonic test - defects in welding - causes and           |   |  |  |
| remedies                                                                             | - safety practices in welding.                                                      |   |  |  |
| Unit III                                                                             | FORGING AND PRESS WORKING                                                           |   |  |  |
| FORGING                                                                              | AND PRESS WORKING                                                                   | 9 |  |  |
| Chapter 3.1: Forging: Hot working, advantages of hot working - hot working           |                                                                                     |   |  |  |
| operation                                                                            | s – rolling – forging – hammer or smith forging, drop forging, upset                |   |  |  |
| forging, p                                                                           | ress forging – roll forging                                                         |   |  |  |
| Chapter 3                                                                            | <b>2.</b> Press Working: Types of presses – mechanical and hydraulic presses –      |   |  |  |
| nress too                                                                            | and accessories - press working operations - bending operations -                   |   |  |  |
| angle be                                                                             | nding – channel bending – curling –drawing – shearing operations –                  |   |  |  |
| blanking -                                                                           | <ul> <li>piercing – trimming – notching –lancing – shaving – parting off</li> </ul> |   |  |  |
| Unit IV                                                                              | POWDER METALLURGY AND HEAT TREATMENT                                                |   |  |  |
|                                                                                      |                                                                                     |   |  |  |
| Chapter                                                                              | <b>4.1:</b> Powder Metallurgy: Methods of manufacturing metal powders –             | 9 |  |  |
| atomization, reduction and electrolysis deposition – compacting – sintering – sizing |                                                                                     |   |  |  |
| – infiltrati                                                                         | on – mechanical properties of parts made by powder metallurgy – design              |   |  |  |
| rule for th                                                                          | e powder metallurgy process.                                                        |   |  |  |
|                                                                                      |                                                                                     |   |  |  |



# **DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI - 600 025 REGULATION 2023**

| Chapter 4.2: Heat Treatment: Purpose – procedures – applications of various heat |                                                                                |     |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----|--|
| treatment                                                                        | process – Iron carbon equilibrium diagram Annealing – Normalizing –            |     |  |
| hardening                                                                        | - tempering -quenching medium - different types of quenching medium.           |     |  |
| UNIT V WORK HOLDING, TOOL HOLDING DEVICES AND POWER TOOLS                        |                                                                                |     |  |
| Chapter 5                                                                        | .1: Work Holding Devices: Chucks - Centres - Steady Rest - Follower rest -     | 9   |  |
| Face Plate                                                                       | e - Catch Plate - Drive plate - carrier - Mandrel - Machine Vice - V block - T |     |  |
| Bolts and                                                                        | Clamp - Angle plate - Indexing head - Description and uses.                    |     |  |
| Tool Hold                                                                        | ing Devices: Four way tool post - Turret indexing - Arbors - Adapter - Drill   |     |  |
| chuck - Sl                                                                       | eeve - Socket - collet. Description and uses.                                  |     |  |
|                                                                                  |                                                                                |     |  |
| Chapter 5                                                                        | .2: Power Tools: Classification - Hand drill- Hammer Drills- Angle Grinder -   |     |  |
| impact w                                                                         | rench - Circular saw - Chain saw - Jigsaw - Power/impact screwdrivers -        |     |  |
| Electrical Screwdrivers. Cutters: Craftsman cutter - Reciprocating cutter.       |                                                                                |     |  |
|                                                                                  | TOTAL HOURS                                                                    | 45  |  |
|                                                                                  | Assessment Test and Revision with Student activity                             | 15* |  |

\* Common Test and Revision periods can be used. 1 Period per week can be used for this subject.

#### Suggested list of Students Activity,

- 1. Prepare the green sand mould for the solid and split patterns.
- 2. Practice the basic welding operations.
- 3. Practice the bending and shearing operations in the press.
- 4. Prepare a list of work holding devices and tool holding devices used in the workshop.



| 1020233110 |                       | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| THEORY     | MANUFACTORING PROCESS | 3 | 0 | 0 | 3 |

#### **Reference Books:**

- Elements of workshop Technology Volume I & II Hajra Chowdry & Bhattacharaya Ilth Edition - Media Promoters & Publishers Pvt. Ltd.,
- A Textbook of workshop Technology R.S.Khurmi & J.K.Gupta 2nd Edition, S.Chand & Co., Ram Nagar, New Delhi – 2018.
- 3. Manufacturing process Begeman 5th Edition -McGraw Hill, New Delhi 2011.
- 4. Workshop Technology- WAJ Chapman Volume I, II, & III Vima Books Pvt. Ltd., 4262/3, Ansari Road, Daryaganj, New Delhi 110 002.
- Production Technology HMT- Edn. 18 published by Tata McGraw Hill publishing Co. Ltd., 7 West Patel nagar, New Delhi 110 008. – 20181.

#### Web Reference

- 1. https://www.youtube.com/watch?v=0iezQ4leXsc Metal Casting
- 2. https://youtu.be/8RUXvdsgsyg Sand Properties
- 3. https://www.youtube.com/watch?v=dMcP3aCHyTQ&t=6s -Welding Tech
- 4. https://www.youtube.com/watch?v=EJ94XC0YfZc&t=801s- Metal Forming
- 5. https://www.youtube.com/watch?v=AZMbSBVVWhI- Powder metallurgy
- 6. https://www.youtube.com/watch?v=748\_ME0p0Ag- Heat Treatment process



THEORY

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

#### END SEMESTER QUESTION PATTERN - Theory Exam

#### Duration: 3 Hrs.

#### Max. Marks: 100

**Note:** Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

#### Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.



| 1020233230 | STRENGTH OF MATERIALS | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| PRACTICUM  |                       | 3 | 0 | 2 | 4 |

#### Introduction:

Strength of materials is a key subject in mechanical engineering that focuses on how solid objects behave when they are put under various forces and pressures. It's vital it helps us understand and predict if a material can handle certain loads without breaking. Strength of materials is the discipline related to calculation of stresses and strains in structures and mechanical components. It helps engineers make informed decisions about material selection, decision and construction.

#### **Course Objectives:**

Acquire knowledge about selection of materials

Towards developing the theoretical basics about the stress, strain and elastic modulus concepts in various components.

Understand the mechanical behavior of materials.

To solve practical problems related to shafts and springs.

Estimate the stresses induced in thin cylinders.

Understand the basics of engineering materials and their role in the development of societies and industries.

#### **Course Outcomes:**

On successful completion of this course, the student will be able to

- CO1: Discuss various engineering materials and their mechanical properties
- CO2: Compute the effects various loads on materials
- CO3: Analyse the shaft using the principles of pure torsion
- CO4: Analyse the springs in various load conditions
- CO5: Determine the various dimensions of thin cylinders under various load conditions

#### **Pre-requisites:**

Knowledge of basic mathematics and Science



| 1020233230 | STRENGTH OF MATERIALS | L | Т | Р | С |
|------------|-----------------------|---|---|---|---|
| PRACTICUM  |                       | 3 | 0 | 2 | 4 |

### CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | PO4 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 2   | 3   | 3   |     |     |     |     |
| C02     | 2   | 3   | 3   | 2   |     |     |     |
| C03     | 3   | 3   | 3   |     |     |     |     |
| C04     | 3   | 3   | 3   |     |     |     |     |
| C05     | 3   | 1   | 3   | 2   |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy:

The instructional strategy for teaching strength of materials in polytechnic colleges emphasizes practical application and industry relevance.

Through a curriculum aligned with the state technical education board, the syllabus is broken down into manageable units, prioritizing topics pertinent to Indian engineering contexts.

Visual aids, bilingual explanations, and hands-on demonstrations are utilized to accommodate linguistic diversity and enhance understanding.

Incorporating industry examples and field visit to construction sites and manufacturing facilities fosters experiential learning.

Assessment methods include practical assessment, written exams, and peer learning initiatives, complemented by career guidance to inform students about opportunities in mechanical engineering.

Continuous feedback mechanisms ensure the refinement and effectiveness of the instructional approach.



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| З | 0 | 2 | 4 |

#### **Assessment Methodology:**

|                       | Co                                           | ontinuous Asses                                  | sment (40 marks)                  | )                                                | End                                                        |
|-----------------------|----------------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------------|------------------------------------------------------------|
|                       | CA1                                          | CA2                                              | CA3                               | CA4                                              | Examination<br>(60 marks)                                  |
| Mode                  | Written Test<br>Theory<br>(Any Two<br>Units) | Written Test<br>Theory<br>(Another Two<br>Units) | Practical Test<br>(All Exercises) | Written Test<br>(Complete<br>Theory<br>Portions) | Written<br>Examination<br>(Complete<br>Theory<br>Portions) |
| Duration              | 2 Periods                                    | 2 Periods                                        | 3 Hours                           | 3 Hours                                          | 3 Hours                                                    |
| Exam Marks            | 50                                           | 50                                               | 100                               | 100                                              | 100                                                        |
| Converted to          | 10                                           | 10                                               | 15                                | 15                                               | 60                                                         |
| Marks                 | 1                                            | 0                                                | 15                                | 15                                               | 60                                                         |
| Tentative<br>Schedule | 6th Week                                     | 12th Week                                        | 15th Week                         | 16th Week                                        |                                                            |

Note:

• CA1 and CA2: Assessment written test should be conducted for 50 Marks. The marks scored will be converted to 10 Marks for each test. Best of one will be considered for the internal assessment of 10 Marks.

CA1 and CA2, Assessment written test should be conducted for two units as below.

Answer any Five questions. (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions.

Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

• **CA 3:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one experiment by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded for 100 marks will be converted to 15 Marks for the internal mark.



| PRACTICUM 3 0 2 | 4 |
|-----------------|---|

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. Each exercise/experiment should be evaluated for 10 Marks. The total marks awarded should be converted to 30 Marks for the practical test as per the scheme of evaluation as below.

### The details of the practical documents to be prepared as per the instruction below.

Each exercise observation and calculations should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or file. The reading and calculations and graph should be written by the student manually. The evaluated practical document should be submitted for the Practical Test (CA3). The mark scored by the students should be converted to 30 marks. The same should be included as per the allocation in the practical test.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| SI.No. | Description                         | Marks |
|--------|-------------------------------------|-------|
| A      | Aim / Apparatus required            | 10    |
| В      | Procedure / Observation             | 20    |
| С      | Formula / Calculation               | 20    |
| D      | Result / Graph                      | 10    |
| E      | Practical document (All Practicals) | 30    |
| F      | Viva Voce                           | 10    |
|        | Total                               | 100   |

#### **SCHEME OF EVALUATION - Practical Test**



| 1020233230 | STRENGTH OF MATERIALS | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| PRACTICUM  |                       | 3 | 0 | 2 | 4 |

**CA4:** Model examination should be conducted for complete theory portions as per the end semester question pattern. The marks awarded should be converted to 15 marks for the internal assessment.

#### **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

### **Syllabus Contents**

| Unit I SELECTION OF MATERIALS                                                  |                                                                        |   |  |  |  |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------|---|--|--|--|
| Theory:                                                                        |                                                                        | 9 |  |  |  |
| Engineering                                                                    | materials:                                                             |   |  |  |  |
| Introduction                                                                   | to engineering materials- Ferrous and Non Ferrous materials - material |   |  |  |  |
| selection-fa                                                                   | ctors affecting the selection of materials-procedure for materials     |   |  |  |  |
| selection.                                                                     |                                                                        |   |  |  |  |
| Advanced                                                                       | materials - smart materials and nanomaterials-classification of        |   |  |  |  |
| nanomateria                                                                    | als – applications.                                                    |   |  |  |  |
| Hardness te                                                                    | est:                                                                   |   |  |  |  |
| Brinell hard                                                                   | lness test, Rockwell hardness test, Vickers Hardness test – Shore      |   |  |  |  |
| Hardness To                                                                    | est ( Durometer) - Knowledge on Micro Hardness test                    |   |  |  |  |
| Practical:                                                                     |                                                                        | 3 |  |  |  |
| EXPERIMENT : 1.                                                                |                                                                        |   |  |  |  |
| Hardness Test: Determination of Rockwell hardness number for various materials |                                                                        |   |  |  |  |
| like mild st                                                                   | eel, high carbon steel, brass, copper, aluminium and Plastics (Any Two |   |  |  |  |
| Materials).                                                                    |                                                                        |   |  |  |  |



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| З | 0 | 2 | 4 |

| Unit II                                                                         | DEFORMATION OF METALS                                                           |   |  |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---|--|--|
| Theory:                                                                         |                                                                                 | 9 |  |  |
| Simple stre                                                                     | sses and strains: Definition - load, stress and strain - classification of      |   |  |  |
| force syster                                                                    | ns - tensile, compressive and shear force systems– Definition - Hooke's         |   |  |  |
| law -Young's                                                                    | s modulus - working stress, factor of safety, load factor, shear stress and     |   |  |  |
| shear strain - modulus of rigidity - deformation due to tension and compressive |                                                                                 |   |  |  |
| forces - simple problems in tension, compression and shear force.               |                                                                                 |   |  |  |
|                                                                                 |                                                                                 |   |  |  |
| Mechanical                                                                      | testing of materials: Tensile test of mild steel in UTM - stress strain         |   |  |  |
| diagram - l                                                                     | imit of proportionality - elastic limit -yield stress - breaking stress -       |   |  |  |
| ultimate stre                                                                   | ess - percentage of an elongation and percentage reduction in area ( no         |   |  |  |
| problems)- fatigue test - creep test.                                           |                                                                                 |   |  |  |
| Practical:                                                                      |                                                                                 |   |  |  |
| EXPERIMENT : 2.                                                                 |                                                                                 |   |  |  |
| Tensile Tes                                                                     | t on materials : Determine young's modulus of elasticity, yield stress,         |   |  |  |
| ultimate sti                                                                    | ress, breaking stress, percentage of elongation and percentage of               |   |  |  |
| reduction in                                                                    | area of a given specimen ( Mild steel, Cast Iron , Aluminium, Brass)            |   |  |  |
| (Any one ma                                                                     | aterial) and plot stress strain diagram.                                        |   |  |  |
| Unit III                                                                        | ELASTIC CONSTANTS AND STRAIN ENERGY                                             |   |  |  |
| Theory:                                                                         |                                                                                 | 9 |  |  |
| Elastic cons                                                                    | stants: Definition - lateral strain – poison's ratio - volumetric strain - bulk |   |  |  |
| modulus -                                                                       | volumetric strain of rectangular and circular bars (No derivation) -            |   |  |  |
| problems co                                                                     | onnecting linear, lateral and volumetric deformation – Simple problems          |   |  |  |
| on elastic constants.                                                           |                                                                                 |   |  |  |
| Strain energ                                                                    | gy: Definition - proof resilience - modulus of resilience - the expression      |   |  |  |
| for strain er                                                                   | nergy stored in a bar due to axial load - instantaneous stresses due to         |   |  |  |
| sudden and                                                                      | l impact loads (No derivation) - problems computing instantaneous               |   |  |  |
| stress and d                                                                    | leformation in sudden and impact loadings.                                      |   |  |  |



|                                                                                       |                                                                               | -                                                                                   | -         |       | - |  |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------|-------|---|--|--|
| 020233230                                                                             | STRENGTH OF MATERIALS                                                         | L                                                                                   | Т         | Ρ     | С |  |  |
| PRACTICUM                                                                             |                                                                               | 3                                                                                   | 0         | 2     | 4 |  |  |
| Practical:                                                                            |                                                                               |                                                                                     |           |       |   |  |  |
|                                                                                       |                                                                               |                                                                                     |           |       | 3 |  |  |
| EAPERIMENT: 5.                                                                        |                                                                               |                                                                                     |           |       |   |  |  |
| Aluminium or                                                                          | A process (Apy Two materials) using ized test and C                           | horpy t                                                                             | er, Cast  |       |   |  |  |
|                                                                                       |                                                                               |                                                                                     | -51.      |       |   |  |  |
|                                                                                       |                                                                               |                                                                                     |           |       |   |  |  |
| Theory:                                                                               |                                                                               | <b>a</b> 0                                                                          |           |       | 9 |  |  |
| Torsion: Theo                                                                         | bry of torsion - assumptions - torsion equation $\frac{T}{T} = \frac{T_s}{R}$ | $=\frac{C\theta}{l}$                                                                |           |       |   |  |  |
| (no derivatior                                                                        | n)- strength of solid and hollow shafts - power trans                         | mitted                                                                              | - definit | ion - |   |  |  |
| ,<br>polar modulu                                                                     | is – sectional modulus - torsional rigidity - streng                          | th and                                                                              | stiffnes  | s of  |   |  |  |
| shafts - comparison of hollow and solid shafts in weight and strength                 |                                                                               |                                                                                     |           |       |   |  |  |
| considerations - advantages of hollow shafts over solid shafts – shear stress         |                                                                               |                                                                                     |           |       |   |  |  |
| distribution - problems.                                                              |                                                                               |                                                                                     |           |       |   |  |  |
| Material testing: Torsion testing machine (Description only).                         |                                                                               |                                                                                     |           |       |   |  |  |
| Practical:                                                                            |                                                                               |                                                                                     |           |       | 4 |  |  |
| EXPERIMENT : 4.                                                                       |                                                                               |                                                                                     |           |       |   |  |  |
| Torsion test: Determine the shear stress and modulus of rigidity of the given         |                                                                               |                                                                                     |           |       |   |  |  |
| specimen ( N                                                                          | fild steel, Cast Iron, Aluminium and Brass) (Any two                          | materi                                                                              | als) usi  | ng a  |   |  |  |
| Torsion testin                                                                        | ng machine.                                                                   |                                                                                     |           |       |   |  |  |
| Unit V                                                                                | SPRINGS AND THIN CYLINDERS                                                    |                                                                                     |           |       |   |  |  |
| Theory:                                                                               |                                                                               |                                                                                     |           |       | 9 |  |  |
| Springs: Types of springs - laminated and coiled spring - applications - types of     |                                                                               |                                                                                     |           |       |   |  |  |
| coiled springs - difference between open and closely coiled helical springs - closely |                                                                               |                                                                                     |           |       |   |  |  |
| coiled helical spring subjected to an axial load (no derivation) - problems to        |                                                                               |                                                                                     |           |       |   |  |  |
| determine sh                                                                          | ear stress, deflection, stiffness and resilience of                           | determine shear stress, deflection, stiffness and resilience of closed coil helical |           |       |   |  |  |
|                                                                                       |                                                                               |                                                                                     |           |       |   |  |  |
| springs.                                                                              |                                                                               |                                                                                     |           |       |   |  |  |



|                                                                                      |                                                         |          |           |       | _ |
|--------------------------------------------------------------------------------------|---------------------------------------------------------|----------|-----------|-------|---|
| 1020233230                                                                           | STRENGTH OF MATERIALS                                   |          | Т         | Ρ     | С |
| PRACTICUM                                                                            |                                                         | 3        | 0         | 2     | 4 |
|                                                                                      |                                                         |          |           |       |   |
| Thin cylinde                                                                         | rs: Definition - thin cylindrical shell - failure of th | in cylin | idrical a | shell |   |
| subjected to                                                                         | internal pressure - hoop and longitudinal stress        | es cau   | ses in    | thin  |   |
| cylindrical shell subjected to internal pressure (no derivation) - simple problems - |                                                         |          |           |       |   |
| change in dimensions of a thin cylindrical shell subjected to internal pressure -    |                                                         |          |           |       |   |
| problems                                                                             |                                                         |          |           |       |   |
| Practical:                                                                           |                                                         |          |           |       | 6 |
| EXPERIMENT : 5.                                                                      |                                                         |          |           |       |   |
| Test on springs of circular section: Determine the modulus of rigidity and strain    |                                                         |          |           |       |   |
| energy, and stiffness of the open coiled helical springs.                            |                                                         |          |           |       |   |
| EXPERIMENT                                                                           | · : 6.                                                  |          |           |       |   |
| Determine th                                                                         | e modulus of rigidity and strain energy and stiffr      | ness of  | the cla   | heed  |   |

Determine the modulus of rigidity and strain energy, and stiffness of the closed coiled helical springs.

Revision + Test + Students Activity 10

TOTAL HOURS

75

Suggested List of Students Activity:

Other than the classroom learning, the following are the suggested student related co-curricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course.

- Conduct a survey, specific to properties of various types of materials used in mechanical engineering and prepare a report.
- Compare the strength of the solid shaft with that of hollow shaft for the same power transmission for an automobile and make a report.
- Students can be given practices in the Virtual Labs | Mechanical Engineering (vlab.co.in).
   This can be given to a team of students and make them prepare a report.



**Sample Experiments:** Four bar mechanism, Slider crank mechanism, Elliptical Trammel, Cam Mechanism, Linkage Model, Crank and Slotted Mechanism, Whitworth Mechanism, Straight Line Mechanism, Universal Joint etc...

### Text and Reference books:

- 1. Dr. P.Purushothama Raj, V. Ramasamy, Strength of Materials, Pearson Edition 2013.
- 2. Dr. R K Bansal, strength of materials, 5th edition , laxmi publications private limited, 2013.
- 3. R S Khurmi , strength of materials, edition 2019 , s chand publications, 2019.
- 4. B K Sarkar, strength of materials, 10th edition, tata mcgraw hill education private limited, 2012.
- 5. R K Rajput, materials science and engineering, 5th edition, S K Kataria and sons publications, 2024

### Web reference:

- https://youtu.be/GkFgysZC4Vc?si=j-q-9UMmeDg64YNB
- https://youtu.be/uA\_HqCGo8Pg?si=q03sPw7010ot0BdT
- https://youtu.be/WERoSRcnafA?si=b7Xv3RI1s8LvSUhw

# Equipment / Facilities required to conduct the Practical Portions.

| 1. Universal testing machine.           | 01 |
|-----------------------------------------|----|
| 2. Rockwell's hardness testing machine. | 01 |
| 3. Impact testing machine.              | 01 |
| 4. Torsion testing machine.             | 01 |
| 5. Spring testing machine               | 01 |
| Required instruments and consumables.   |    |



#### END SEMESTER QUESTION PATTERN - Theory Exam

#### Duration: 3 Hrs.

#### Max. Marks: 100

**Note:** Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

#### Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.



| 1020233320 | WORKSHOP PRACTICES | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICAL  |                    | 0 | 0 | 4 | 2 |

#### Introduction:

Diploma technocrats frequently encounter diverse manufacturing processes. This course workshop practice aims to enhance student's comprehension of manufacturing methods, like Welding, Soldering, Brazing and use of Power tools.

#### **Course Objectives:**

- To identify the tools and equipment used in workshop practice.
- Perform welding operations to make different types of joints.
- Identify the different welding defects.
- Practical skills on Soldering, Brazing and power tools.
- Prepare a record of work for all the exercises.

#### **Course Outcomes:**

On successful completion of this course, the student will be able to

- CO1: Recall the safety procedure followed on the shop floor.
- CO2: Demonstrate skills in all types of welding.
- CO3: Acquire skills on soldering.
- CO4: Acquire skills on Brazing.
- CO5: Demonstrate skills on the use of Power tools.

#### **Pre-requisites:**

Basic Workshop Practices and Basic Engineering Practices.



| 1020233320 | WORKSHOP PRACTICES | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICAL  |                    | 0 | 0 | 4 | 2 |

### CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | PO4 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 2   |     |     | 3   |     |     | 1   |
| C02     | 2   |     |     | 3   | 1   |     |     |
| C03     | 2   |     |     | 3   |     |     |     |
| C04     | 2   |     |     | 3   |     |     |     |
| C05     | 2   |     |     | 3   |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies



PRACTICAL

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

#### Assessment Methodology:

|              | C              | End Semester   |               |                |                           |  |             |
|--------------|----------------|----------------|---------------|----------------|---------------------------|--|-------------|
|              | CA1            | CA2            | CA3           | CA4            | Examination<br>(60 marks) |  |             |
| Mode         | Practical Test | Practical Test | Practical     | Practical Test | Practical                 |  |             |
|              |                | Document       |               | Docume         |                           |  | Examination |
| Portion      | First Cycle    | Second Cycle   | All Exercises | All Exercises  | All Exercises             |  |             |
| Duration     | 2 Periods      | 2 Periods      | Regularly     | 3 Hours        | 3 Hours                   |  |             |
| Exam Marks   | 50             | 50             | 100           | 100            | 100                       |  |             |
| Converted to | 10             | 10             | 10            | 20             | 60                        |  |             |
| Marks        | 10             |                | 10            | 20             | 60                        |  |             |
| Tentative    | 7th Week       | 14th Week      | 15th Week     | 16th Week      |                           |  |             |
| Schedule     |                |                |               |                |                           |  |             |

Note:

• CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Cycle I: 1, 2, 3, 4 and 5. Cycle II: 6, 7, 8, 9 and 10.



#### SCHEME OF EVALUATION

| PART | DESCRIPTION                | MARKS |
|------|----------------------------|-------|
| A    | Aim & Tools required       | 10    |
| В    | Preparation                | 20    |
| С    | Welding / Cutting/ Joining | 20    |
|      | 50                         |       |

• **CA 3:** Practical document should be maintained for every exercise immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

#### The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or in a file with the documents. The procedure and sketch should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The logbook and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• **CA 4:** All the exercises should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test (CA4) should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.



| 1020233320 | WORKSHOP PRACTICES | L | Т | Р | С |
|------------|--------------------|---|---|---|---|
| PRACTICAL  |                    | 0 | 0 | 4 | 2 |

#### SCHEME OF EVALUATION

| Part | Description                                | Marks |
|------|--------------------------------------------|-------|
| Α    | Aim & Tools required                       | 10    |
| В    | Procedure                                  | 20    |
| С    | Preparation                                | 20    |
| D    | Welding / Cutting/ Joining                 | 20    |
| E    | Accuracy / Tool Handling / Finish / Result | 20    |
| F    | Viva Voce                                  | 10    |
|      | TOTAL MARKS                                | 100   |

#### **Syllabus Contents**

| Introduction                                                                    | Period |
|---------------------------------------------------------------------------------|--------|
| BUREAU OF INDIAN STANDARDS CODE OF PRACTICE FOR SAFETY AND HEALTH               |        |
| REQUIREMENTS IN ELECTRIC AND GAS WELDING AND CUTTING OPERATIONS -               |        |
| IS : 818 - 1968                                                                 |        |
| Fire prevention and protection-Protection of personnel - general and protective |        |
| equipment- Work in confined spaces - ventilation and health protection.         |        |
| Soldering - Basic principles – Brazing – Basic principles.                      |        |

#### **Practical Exercises**

#### 40 Periods

- 1. Lap joint Arc Welding (RawMaterial: 40 mm x 10 mm MS flat)
- 2. T- Joint Arc Welding (RawMaterial: 40 mm x 10 mm MS flat)
- 3. Butt Joint (TIG / MIG Welding) (RawMaterial: MS Pipe / MS Square tube)
- Profile cutting circular profile Gas cutting. (Raw Material: 100 x 100 mm X 6mm M.S.Flat)



- 5. Lap joint Gas Welding (Raw Material: 10G Mild Steel)
- 6. Spot welding Lap joint Make a tray and join the vulnerable points (Minimum 8 Points) (Raw Material: GI/MS Sheet 22 G).
- 7. Solder as per the given circuit diagram.
- 8. Braze the joints of the copper tube. Prepare the tube with Cutting, bending, flaring, Swaging and pinching practice.
- Dismantle and Assemble the Bolt/Nut using wrench power tools. (Pneumatic / Electric). (Sample Exercise Flange / Cylinder head / Remove Tire from the disc / etc...)
- 10. Profile cutting Using Jigsaw/Craftsman cutter/Reciprocating cutter. (Raw Material: 100 x 100 mm X 6 mm M.S.Flat / Wood)

### **Test & Revision**

# Suggested List of Students Activity:

- 1. Study the welding symbols and welding testing procedure.
- 2. List Causes of welding defects and suggest remedies.
- 3. Practices in Soldering and Brazing. Compare the soldering and brazing process.
- 4. Enumerate safety guidelines and precautions for a welding shop.
- 5. Inspect the assembly lines in an Industry and submit a report.

# **Text and Reference Books:**

- 1. Manufacturing Technology Vol-1 by P N RAO, McGraw Hill, New Delhi.
- 2. Manufacturing Technology Vol-2 by P N RAO, McGraw Hill, New Delhi.
- 3. Elements of Workshop Technology Vol-1 by S K Hajra Choudhury, A K Hajra Choudhury, Nirjhar Roy-Media Promoters & Publisher PVT. Ltd.
- 4. CODE OF PRACTICE FOR SAFETY AND HEALTH REQUIREMENTS IN ELECTRIC AND GAS WELDING AND CUTTING OPERATIONS (First Revision) IS: 818 - 1968- Seventh Reprint SEPTEMBER 1998

# DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 **REGULATION 2023**



**10 Periods** 

**10 Periods** 

| 1020233320 | WORKSHOP PRACTICES | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICAL  |                    | 0 | 0 | 4 | 2 |

#### Web-based/Online Resources:

- 1. https://www.youtube.com/watch?v=RyLvVMg84xs -Basics of welding process2.
- 2. https://www.youtube.com/watch?v=nBwRpI\_0d50 Fundamentals of Brazing3.
- 3. ttps://www.youtube.com/watch?v=Wbd0mhOfGRg Soldering Basics

# END SEMESTER EXAMINATION – PRACTICAL EXAM. BOARD EXAMINATIONS

Note:

- All the exercises have to be completed, any one exercise will be given for examination.
- All the exercises should be given in the question paper. The student is allowed to select by lot or question papers issued by the DOTE Exam section shall be used.
- Practical documents along with the activity report should be submitted for the End Semester Examinations.

| Part | Description                                | Marks |
|------|--------------------------------------------|-------|
| Α    | Aim & Tools required                       | 10    |
| В    | Procedure                                  | 20    |
| С    | Preparation                                | 20    |
| D    | Welding / Cutting/ Joining                 | 20    |
| E    | Accuracy / Tool Handling / Finish / Result | 20    |
| F    | Viva Voce                                  | 10    |
|      | TOTAL MARKS                                | 100   |

# **DETAILED ALLOCATION OF MARKS.**


PRACTICAL

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

# Equipment / Facilities required conducting the Practical Course.

| S.No | Name of the Equipment's                                              | Quantity Required                      |
|------|----------------------------------------------------------------------|----------------------------------------|
| 1.   | Arc welding booth                                                    | 2 Nos with welding transformer         |
| 2.   | TIG / MIG welding booth                                              | 1 No                                   |
| 3.   | Gas welding unit                                                     | 1 Set ( Oxygen and acetylene cylinder) |
| 4.   | Welding shield                                                       | 5Nos                                   |
| 5.   | Gas welding goggles                                                  | 5Nos                                   |
| 6.   | Chipping hammer                                                      | 5Nos                                   |
| 7.   | Leather Gloves 18"                                                   | 5 Sets                                 |
| 8.   | Spot welding machine                                                 | 1 No                                   |
| 9.   | Brazing equipment                                                    | 1 No                                   |
| 10.  | Soldering equipment                                                  | 1 No                                   |
| 11.  | Electric Jig saw / Craftsman cutter /<br>Reciprocating cutter        | 1 No                                   |
| 12.  | Pneumatic / Electric impact wrench                                   | 1 No                                   |
| 13.  | Cutting, bending, flaring, Swaging and pinching tool for copper tube | Each 1No                               |
| 14.  | Consumables                                                          | Sufficient quantity                    |



| 1020233320 | WORKSHOP PRACTICES | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICAL  |                    | 0 | 0 | 4 | 2 |

# Exercises drawing:

1. Lap Joint - Arc Welding (Raw Material: 40 mm X 10 mm MS flat)



2. T-Joint -Arc Welding (RawMaterial:40 mm X 10 mm MS flat)



3. Butt Joint-TIG / MIG Welding (Raw Material: MS Pipe / MS Square tube)



4. Profile cutting- Circular profile -cutting Gas cutting (Raw Material : 100 x 100mm x 6mm M.S. flat)





| 1020233320 | WORKSHOP PRACTICES | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICAL  |                    | 0 | 0 | 4 | 2 |

5. Lap joint - Gas Welding- (Raw Material: 10G Mild Steel)



6. Spot welding - Lap joint - Make a tray / dustpan and join the vulnerable points (Minimum 8 Points) (Raw Material: GI/MS Sheet 22 G)



7. Solder as per the given circuit diagram / Battery pack with series and parallel connections.





| 1020233320 | WORKSHOP PRACTICES | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICAL  |                    | 0 | 0 | 4 | 2 |

8. Braze the joints of the copper tube. Prepare the tube with Cutting, bending, flaring, Swaging and pinching practice.



Cutting, bending, flaring, Swaging and pinching practice using copper tube.



9. Dismantle and Assemble the Bolt/Nut using wrench power tools. (Pneumatic / Electric).(Sample Exercise Flange / Cylinder head / Remove Tire from the vehicle disc / etc...)







| 1020233320 | WORKSHOP PRACTICES | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICAL  |                    | 0 | 0 | 4 | 2 |

10. Profile cutting - Using Jigsaw. (Raw Material: 100 x 100 mm X 6 mm M.S.Flat / Wood)





# Text and Reference Books:

- CODE OF PRACTICE FOR SAFETY AND HEALTH REQUIREMENTS IN ELECTRIC AND GAS WELDING AND CUTTING OPERATIONS (First Revision) IS: 818 – 1968 - Seventh Reprint SEPTEMBER 1998.
- Hajra Choudry & Battacharya Elements of Workshop Technology Vol. I & II -Edition 11, -Media Promoters and Publishers Pvt. Ltd., – 2007.
- 3. P N RAO-Manufacturing technology 5th edition McGraw Hill, New Delhi.2018.

#### Web-based Online Resources:

- https://www.youtube.com/watch?v=dMcP3aCHyTQ Welding Processes NPTEL-NOC IITM
- https://www.youtube.com/watch?v=TpvmJBeGUrg&list=PLyqSpQzTE6M-KwjFQByB vRx464XpCgOEC&index=2 Classification of welding processes and definition of welding arc - NEPTE - NOC IITM.



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

#### Introduction:

Motion control is required in a large number of industrial and domestic applications. Systems employed for getting the required motion and their smooth control are called Drives. Drives require prime movers like Diesel or petrol engines, gas or steam turbines, hydraulic motors or electric motors. These prime movers deliver the required mechanical energy for getting the motion and its control. Drives employing Electric motors as prime movers for motion control are called Electric Drives. Further electrical speed control in almost all industrial applications are incomplete without the use of the specific electric drive. This course will empower the students with the necessary skills to understand the concept associated with Electrical Drives.

#### **Course Objectives:**

The objective of this course is to enable the student to

- Explain the necessity of A.C Circuit, Fuse, MCB, ELCB and Contactor.
- Explain the Working of RPS, Logic Gates and PLC.
- Define electric drive, its parts, advantages and explain choice of electric drive.
- Understand the characteristics of DC Shunt Motor and 3 Phase Induction Motor.
- Discuss the concept of AC Drive, Stepper Motor Drive and Servo Motor Drive.

#### **Course Outcomes:**

On successful completion of this course, the student will be able to

CO1: Demonstrate the working of MCB, ELCB and Contactor.

CO2: Describe the working of RPS and Simple LED Circuit.

CO3: Describe the concept of Logic Gate and PLC.

CO4: Demonstrate the starting and speed control methods of Induction Motor.

CO5: Interface and test the working of Driver for DC Motor and Stepper Motor.

#### Pre-requisites:

Basics of Science and Engineering



| 1020233440 | INDUSTRIAL DRIVES AND CONTROL | L | Т | Ρ | С |
|------------|-------------------------------|---|---|---|---|
| PRACTICUM  |                               | 1 | 0 | 4 | 3 |

## CO/PO Mapping:

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | 1   | 1   | 2   | -   |     |     |
| C02     | 3   | 1   | 1   | 2   | -   |     |     |
| C03     | 3   | 1   | 1   | 2   | -   |     |     |
| C04     | 3   | 1   | 1   | 2   | -   |     |     |
| C05     | 3   | 1   | 1   | 2   | -   |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their curiosity to learn.
- Implement task-based learning activities where students work on specific tasks or projects.
- Incorporate technology tools and resources, such as online platforms, interactive multimedia, and virtual communication tools, to enhance engagement and provide additional practice opportunities.
- Incorporate formative and summative assessments to gauge student progress and provide targeted feedback.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- All demonstrations/Hand-on practices may be followed in the real environment as far as possible.



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

#### **Assessment Methodology:**

|                       | Co                                            | ontinuous Asses                                        | sment (40 mark         | s)                 | End                                   |
|-----------------------|-----------------------------------------------|--------------------------------------------------------|------------------------|--------------------|---------------------------------------|
|                       | CA1                                           | CA2                                                    | CA3                    | CA4                | Semester<br>Examination<br>(60 marks) |
| Mode                  | Practical<br>Test                             | Practical<br>Test                                      | Written Test<br>Theory | Practical<br>Test  | Practical<br>Examination              |
| Portion               | Cycle I<br>Experiments/<br>50%<br>Experiments | Cycle II<br>Experiments/<br>Another 50%<br>Experiments | All Units              | All<br>Experiments | All<br>Experiments                    |
| Duration              | 2 Periods                                     | 2 Periods                                              | 3 Hours                | 3 Hours            | 3 hours                               |
| Exam Marks            | 60                                            | 60                                                     | 100                    | 100                | 100                                   |
| Converted to<br>Marks | 10                                            | 10                                                     | 15                     | 15                 | 60                                    |
| Marks                 | 1                                             | 0                                                      | 15                     | 15                 | 60                                    |
| Internal Marks        |                                               |                                                        |                        |                    |                                       |
| Tentative<br>Schedule | 7th Week                                      | 14th Week                                              | 15th Week              | 16th Week          |                                       |

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total



| 1020233440 | INDUSTRIAL DRIVES AND CONTROL | L | Т | Ρ | С |
|------------|-------------------------------|---|---|---|---|
| PRACTICUM  |                               | 1 | 0 | 4 | 3 |

marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

#### The details of the documents to be prepared as per the instruction below.

Each experiment should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The Circuit Diagram, Readings, Calculations and Graph / Result should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| PART        | DESCRIPTION                               | MARKS |
|-------------|-------------------------------------------|-------|
| Α           | Aim & Apparatus Required                  | 5     |
| В           | Circuit Diagram                           | 20    |
| C           | Connections and Execution                 | 25    |
| TOTAL       |                                           | 50    |
| D           | Practical Documents (As per the portions) | 10    |
| Total Marks |                                           | 60    |

#### SCHEME OF EVALUATION

• **CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



#### **Question pattern – Written Test Theory**

| Description |                                                    | Marks        |           |
|-------------|----------------------------------------------------|--------------|-----------|
| Part – A    | 30 MCQ Questions.                                  | 30 X 1 Mark  | 30 Marks  |
| Part – B    | 7 Questions to be answered out of 10<br>Questions. | 7 X 10 Marks | 70 Marks  |
| TOTAL       |                                                    |              | 100 Marks |

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. The marks awarded should be converted to 15 Marks for the internal assessment.

#### SCHEME OF EVALUATION

#### Model Practical Examination and End Semester Examination - Practical Exam

| PART | DESCRIPTION                    | MARKS |
|------|--------------------------------|-------|
| Α    | Aim & Apparatus Required       | 5     |
| В    | Circuit Diagram                | 20    |
| С    | Connections and Execution      | 25    |
| D    | Output / Result                | 10    |
| E    | Written Test (Theory Portions) | 30    |
| F    | Viva Voce                      | 10    |
|      | TOTAL                          | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

# Syllabus Contents.

| Theory P                                                                      | Portion : UNIT I                                                             |        |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------|
| A.C CIRC                                                                      | CUITS                                                                        | Period |
| Review c                                                                      | f Ohm's Law – Review of Series and Parallel Connection – Fundamentals        | 4      |
| of AC Vo                                                                      | ltage and Current - Peak Value, Average Value, RMS value of Sine wave –      |        |
| Frequenc                                                                      | cy - Time period – Amplitude - Power and Power Factor – Current              |        |
| calculati                                                                     | on by using single phase power formula – Introduction about Three phase      |        |
| ac suppl                                                                      | y - Current calculation by using three phase power formula - Necessity of    |        |
| Contacto                                                                      | r - Solenoid type Contactor - Necessity of Fuse - Function of MCB -          |        |
| Function                                                                      | of ELCB.                                                                     |        |
| ANALOG                                                                        | AND DIGITAL ELECTRONICS                                                      |        |
| Name, S                                                                       | ymbol and uses of Semiconductor Devices (Diode, Transistor, LED and          | 4      |
| SCR) – Ir                                                                     | mportance of current limiting resistor in LED circuit – RGB LED - Working of |        |
| Half wav                                                                      | e and Full wave rectifiers - Block Diagram of Regulated Power Supply.        |        |
| Logic gates: Binary Number System - Positive and Negative Logic - Definition, |                                                                              |        |
| Symbol, Truth table and Boolean expression for OR, AND, NOT, NOR, NAND, EX-OR |                                                                              |        |
| and EX-NOR gates - Universal Logic Gates: NAND and NOR.                       |                                                                              |        |
| Program                                                                       | mable Logic Controller: Definition - Block Diagram of Programmable Logic     |        |
| Controller – PLC Scan – Ladder Logic for AND Gate and OR Gate.                |                                                                              |        |
| Practical                                                                     | Exercises:                                                                   |        |
| Ex.No                                                                         | Name of the Experiment                                                       | Period |
| 1.                                                                            | VOLTAGE, CURRENT AND POWER MEASUREMENT IN SINGLE PHASE AC                    | 4      |
|                                                                               | CIRCUIT.                                                                     |        |
|                                                                               | Activities to Perform:                                                       |        |
|                                                                               | a) Conduct an experiment to measure voltage, current and power in            |        |
|                                                                               | a single phase a.c circuit by using Voltmeter, Ammeter and                   |        |
|                                                                               | Wattmeter respectively for different loads.                                  |        |



1020233440

PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

|    | b)      | Repeat the same experiment by replacing above meters with a        |   |
|----|---------|--------------------------------------------------------------------|---|
|    |         | single Digital Power Monitor                                       |   |
|    |         | Compare and Discuss the cheartrations                              |   |
|    | ()      | compare and Discuss the observations.                              |   |
| 2. | CONS    | TRUCT LED CIRCUIT WITH CURRENT LIMITING RESISTOR                   | 4 |
|    | Activit | ies to Perform:                                                    |   |
|    | a)      | From the voltage and current rating of the given LED, calculate    |   |
|    |         | the value of the resistor to be connected in series with it.       |   |
|    | b)      | Construct and test a simple circuit using DC Source, Resistor and  |   |
|    |         | LED.                                                               |   |
|    | c)      | Construct and test a simple circuit using DC Source, Resistor and  |   |
|    |         | RGB LED.                                                           |   |
| 3. | CONS    | TRUCT DC REGULATED POWER SUPPLY UNIT                               | 4 |
|    | Activit | ies to Perform:                                                    |   |
|    | a)      | Construct 5V or 12V DC Regulated Power Supply circuit using        |   |
|    |         | Bridge Rectifier, Capacitor Filter and IC Voltage Regulator.       |   |
|    | b)      | Observe the voltage at various stages of the circuit.              |   |
|    | c)      | Discuss the function of each stage of the RPS unit.                |   |
| 4. | DEMO    | NSTRATE THE WORKING OF MCB AND ELCB                                | 4 |
|    | Activit | ies to Perform:                                                    |   |
|    | a)      | Connect Single Pole MCB with Load bank and Test the Tripping       |   |
|    |         | Operation for over load and/or Short Circuit fault.                |   |
|    | b)      | Connect ELCB with Lamp Load and Test the Tripping Operation        |   |
|    |         | for Earth fault.                                                   |   |
| 5. | LOGIC   | GATE USING ICs                                                     | 4 |
|    | Activit | ies to Perform:                                                    |   |
|    | a)      | Construct the circuit and verify the Truth Tables of AND, OR, NOT, |   |
|    |         | NAND, NOR, EX-OR Logic gates by using corresponding Logic          |   |
|    |         | Gate ICs.                                                          |   |
|    | b)      | Compare and Discuss the observations.                              |   |



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

| Theory P              | Portion : UNIT II                                                             |        |
|-----------------------|-------------------------------------------------------------------------------|--------|
| ELECTRI               | C DRIVES                                                                      |        |
| Introduct             | ion - Need for Drive - Advantages of Electric Drive - Parts of Electric       | 7      |
| Drive – C             | Classification of Drives (Group Drive, Individual Drive and Multimotor Drive) |        |
| – Classi <sup>-</sup> | fication of Electric Motors - Characteristics of DC Shunt Motor and DC        |        |
| Series M              | otor – Necessity of starters - Three point starter.                           |        |
| Construc              | tion, Working Principle and Characteristics of Three Phase squirrel cage      |        |
| inductior             | n motor – DOL Starter – Star Delta Starter - Effect of Unbalanced source      |        |
| voltage a             | and Single Phasing – Methods of Speed control of three phase induction        |        |
| motor - E             | Block diagram of Variable Frequency Drive (VFD) - Electric Braking – Types    |        |
| of Electri            | cal Braking – Selection of Motors for different applications – Motors used    |        |
| for Tract             | ion system.                                                                   |        |
| Overview              | of PMDC Motor, BLDC Motor, Stepper Motor Drive, Servo Motor Drive –           |        |
| L293D M               | otor Driver IC.                                                               |        |
| Practical             | Exercises:                                                                    |        |
| Ex.No                 | Name of the Experiment                                                        | Period |
|                       |                                                                               | 4      |
| 0.                    | LOAD TEST ON DC SHONT MOTOR                                                   | 4      |
|                       | a) Conduct Load Test on given DC Shunt Motor                                  |        |
|                       | b) Discuss the starting current and No load current of the Motor              |        |
|                       | c) Plot the performance Characteristics.                                      |        |
| 7.                    | LOAD TEST ON THREE PHASE INDUCTION MOTOR                                      | 4      |
|                       | Activity to Perform:                                                          |        |
|                       | a) Conduct Load Test on given three phase squirrel cage Induction             |        |
|                       | Motor.                                                                        |        |
|                       | b) Discuss the starting current and No load current of the Motor              |        |
|                       | c) Plot the performance Characteristics.                                      |        |



| 1020233440 | ) |
|------------|---|
|------------|---|

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

| 8.  | SPEED CONTROL OF INDUCTION MOTOR USING VFD                            | 4  |
|-----|-----------------------------------------------------------------------|----|
|     | Activity to Perform:                                                  |    |
|     | a) Make connections and Control the speed of the given single         |    |
|     | phase or three phase squirrel cage induction motor by VFD.            |    |
|     | b) Discuss the features and advantages of VFD.                        |    |
| 9.  | DIRECTION CONTROL OF DC MOTOR USING DRIVER IC L293D                   | 4  |
|     | Activity to Perform:                                                  |    |
|     | a) Interface L293D Motor Driver IC with Arduino to control Direction  |    |
|     | of rotation of Two DC Motors.                                         |    |
|     | b) Execute the Arduino program and observe the direction of           |    |
|     | rotation of Motors.                                                   |    |
| 10. | TESTING OF STEPPER MOTOR DRIVE                                        | 4  |
|     | Activity to Perform:                                                  |    |
|     | a) Interface suitable stepper motor driver with stepper motor.        |    |
|     | b) Test the operation of the driver circuit by observing the movement |    |
|     | of the stepper motor.                                                 |    |
|     | Assessment Test + Revision + Students Activity                        | 20 |
|     | Total                                                                 | 75 |
|     |                                                                       | i  |

#### Suggested List of Students Activity:

**Activity 1:** Study and understand the construction and working of DC Generator, Transformer and Alternators available in the Laboratory. Then each student shall write and submit the Report on the above topics.

**Activity 2:** Four students can be grouped as a batch to collect information about Industrial applications of various types of Electric Motors and submit as activity report. Reference books / website details/ Visited Industry details for collection of above information must be mentioned in the report itself.



#### Text book for Reference:

- 1. B. L. Theraja and A. K. Theraja, A Textbook of Electrical Technology Volume II (AC and DC Machines), Multicolour Edition, S. Chand & amp; Co., 2005.
- 2. V K Mehta, Rohit Mehta, Principles of Electronics, 12 th Edition, S. Chand & amp; Co., 2020.
- 3. B.N. Sarkar, Fundamentals of Industrial Drives, 1 st Edition, PHI Learning Pvt. Ltd., 2012.
- 4. Frank D. Petruzella, Programmable Logic Controllers, 6 th Edition, Indian Edition, Mc Graw Hill, 2023.

#### Web-based/Online Resources:

- https://nptel.ac.in/courses/108/104/108104140/#
- https://archive.nptel.ac.in/courses/108/105/108105155/
- https://archive.nptel.ac.in/courses/108/105/108105158/
- https://archive.nptel.ac.in/courses/108/105/108105132/



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

# Equipment / Facilities required to conduct the Practical Course.

| S.No | Name of the Equipment's                                           | Quantity    |
|------|-------------------------------------------------------------------|-------------|
|      |                                                                   | Required    |
| 1.   | MI Ammeter 0-5A, MI Voltmeter 0- 300V, ED Wattmeter 300V/5A,      | Each 1 No.  |
|      | Digital Power Monitor, Lamp Load.                                 |             |
| 2.   | 5V/12V DC Power Supply Unit, LED, RGB LED and Resistors.          | Each 1 No.  |
| 3.   | 230V/12V Transformer, Diodes, Filter Capacitor, Voltage Regulator | Each 1 No.  |
|      | IC, Resistors and CRO.                                            |             |
| 4.   | 3 Amps MCB and 30mA ELCB.                                         | Each 1 No.  |
| 5.   | 5V RPS, Logic Gate ICs: 7408, 7432, 7404, 7400, 7402 & 7486,      | Each 5 Nos. |
|      | Toggle Switches, LEDs and Resistors.                              |             |
| 6.   | DC Shunt Motor with Starting and Loading arrangements.            | 1 No.       |
| 7.   | Contactor and NO, NC Push buttons.                                | Each 1 No.  |
| 8.   | 3 Phase Squirrel Cage Induction Motor with Starting and Loading   | 1 No.       |
|      | arrangements.                                                     |             |
| 9.   | Variable Frequency Drive.                                         | 1 No.       |
| 10.  | DC Motor, L293D Motor Driver IC and Arduino Shield.               | 1 No.       |
| 11.  | Stepper Motor with Driver Shield.                                 | 1 No.       |
| 12.  | Suitable range of MC Voltmeter and Ammeter for DC Motor.          | Each 1 No.  |
| 13.  | Suitable range of MI Voltmeter and Ammeter for AC Motor.          | Each 1 No.  |
| 14.  | Tachometer.                                                       | 1 No.       |
| 15.  | Digital Multimeter.                                               | 4 Nos.      |

#### Note:

• Sufficient number of Worktables to be provided in the laboratory to conduct experiments for students.



| 1020233440 |                               | L | Т | Ρ | С |
|------------|-------------------------------|---|---|---|---|
| PRACTICUM  | INDUSTRIAL DRIVES AND CONTROL | 1 | 0 | 4 | 3 |

- Ensure Permanent wiring connections with suitable circuit breakers / Protective mechanism in the Worktables with proper safety measures.
- In addition to the above list sufficient quantities of consumable, Tools and Testing Instruments to be maintained.
- Charts on Electrical Safety and Procedure of First Aid to be displayed in the Laboratory.
- Necessary proper electrical safety arrangements should be done in the laboratory.
- Awareness about the First Aid for Electrical accidents should be given.

# END SEMESTER EXAMINATIONS - PRACTICAL EXAM

#### Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

| PART | DESCRIPTION              | MARKS |
|------|--------------------------|-------|
| Α    | Aim & Apparatus Required | 5     |
| В    | Circuit Diagram          | 20    |
| С    | Connections / Execution  | 25    |
| D    | Output / Result          | 10    |
| E    | Written Test             | 30    |
| F    | Viva Voce                | 10    |
|      | TOTAL                    | 100   |

#### SCHEME OF EVALUATION

Note: For the written test 30 MCQ shall be asked from the theory portions.



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

#### Introduction:

Production Drawing & Modelling is a crucial aspect of design and manufacturing processes. It involves creating detailed technical drawings and three-dimensional models to communicate product specifications and aid in production. This discipline ensures precision, efficiency and consistency in manufacturing various products across industries in engineering and product design.

#### Course Objectives:

- Understand fundamental principles: Learn the foundational concepts, principles, and standards of production drawing and modelling, including geometric dimensioning and tolerance (GD&T), drafting conventions, and industry-specific guidelines.
- Develop technical drawing skills: Acquire proficiency in creating accurate and detailed technical drawings using CAD software, focusing on orthographic projections, isometric views, section views, and assembly drawings.
- Master 3D modelling techniques: Gain expertise in constructing three-dimensional models of objects and components using CAD software, emphasise solid modelling, surface modelling, parametric modelling, and assembly modelling.
- Interpret engineering documentation: Learn to interpret and analyse engineering drawings, specifications, and other technical documents to extract relevant information for manufacturing processes, including material specifications, geometric tolerances, and assembly instructions.

#### **Course Outcomes:**

On successful completion of this course, the student will be able to

- CO1: Draw various sectional views of 2D assembly drawings manually as per BIS.
- CO2: Create sectional views for 2D assembly drawing.
- CO3: Create 3D modelling using CAD software module.
- CO4: Interpret the drawing and symbols in the Engineering field.



CO5: Demonstrate proficiency in 3D modelling by creating and assembling machine components.

#### **Pre-requisites:**

DRAFTING PRACTICES

#### CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 2   | 1   |     | 2   |     |     |     |
| C02     | 2   | 1   |     | 2   |     |     |     |
| C03     | 2   | 1   |     | 2   |     |     |     |
| C04     | 2   | 1   |     | 2   |     |     |     |
| C05     | 2   | 1   |     | 2   |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy:

- Utilise a blended approach with lectures on manual drawing fundamentals and CAD software introduction.
- Incorporate hands-on sessions for manual drawing practice and CAD software usage.
- Assignments focus on creating detailed drawings of machine parts, transitioning to CAD for 3D modelling, assembly, and printing components.
- Encourage peer collaboration and feedback.



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

#### **Assessment Methodology:**

|                       | Co                                                                           | End                                                                           |                                                                                     |                                                                                     |                                                                                     |
|-----------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                       | CA1                                                                          | CA2                                                                           | CA3                                                                                 | CA4                                                                                 | Semester<br>Examination<br>(60 marks)                                               |
| Mode                  | Practical<br>Test                                                            | Practical<br>Test                                                             | Written Test<br>Theory                                                              | Practical<br>Test                                                                   | Practical<br>Examination                                                            |
| Portion               | Drafting<br>Practices<br>and Solid<br>modelling<br>Practices<br>(Ex 1 and 2) | Drafting<br>Practices<br>and Solid<br>modelling<br>Practices<br>(Ex 3, and 4) | Theory<br>Portions and<br>Assembled<br>views<br>Manual<br>Drawing (All<br>Portions) | Drafting<br>Practices<br>and Solid<br>modelling<br>Practices.<br>(All<br>Exercises) | Drafting<br>Practices<br>and Solid<br>modelling<br>Practices.<br>(All<br>Exercises) |
| Duration              | 2 Periods                                                                    | 2 Periods                                                                     | 3 Hours                                                                             | 3 Hours                                                                             | 3 hours                                                                             |
| Exam Marks            | 60                                                                           | 60                                                                            | 100                                                                                 | 100                                                                                 | 100                                                                                 |
| Converted to<br>Marks | 10                                                                           | 10                                                                            | 15                                                                                  | 15                                                                                  | 60                                                                                  |
| Marks                 | 1                                                                            | 0                                                                             | 15                                                                                  | 15                                                                                  | 60                                                                                  |
| Tentative<br>Schedule | 7th Week                                                                     | 14th Week                                                                     | 15th Week                                                                           | 16th Week                                                                           |                                                                                     |

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

#### The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

The Assembled views for the exercises during Manual drawing practice should be submitted in the drawing sheet (4 Drawing sheet). The print out of the assembled view during drafting practices should be submitted (4 printout). The printout of the solid modelling practices should be submitted (4 printout). The 12 documents should be kept in a file with a Bonafide certificate.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| Part | Description                               | Marks |  |  |
|------|-------------------------------------------|-------|--|--|
|      | PART A – Drafting Practices               |       |  |  |
| Α    | Command / Creation Procedure              | 10    |  |  |
| В    | 2D View with Dimensions                   | 15    |  |  |
|      | PART B – Solid modelling Practices        |       |  |  |
| С    | Creation Part Modelling                   | 10    |  |  |
| D    | CAD Modelling (3D)                        | 15    |  |  |
|      | Practical Total                           | 50    |  |  |
| Е    | Practical Documents (As per the portions) | 10    |  |  |
|      | Total                                     | 60    |  |  |

#### SCHEME OF EVALUATION



• **CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.

|          | Description                                | Mar          | ks        |  |  |  |  |
|----------|--------------------------------------------|--------------|-----------|--|--|--|--|
|          | Manual Assembled Drawing                   |              |           |  |  |  |  |
| Part – A | Two views of the Assemble Drawing.         | Front View - | 50 Marks  |  |  |  |  |
|          | Front view and Top View / Side View in the | 30 Marks.    |           |  |  |  |  |
|          | drawing sheet. (With or without section /  | Top View /   |           |  |  |  |  |
|          | Half section). (30 + 20 = 50 Marks). Any   | Side View -  |           |  |  |  |  |
|          | one exercise can be given by lot.          | 20 Marks.    |           |  |  |  |  |
|          | Theory Portions                            |              |           |  |  |  |  |
| Part – B | 20 One Mark questions (MCQ) should be      | 20 X 1 Mark  | 20 Marks  |  |  |  |  |
|          | answered.                                  |              |           |  |  |  |  |
| Part – C | Three Ten Marks questions should be        | 3 X 10 Marks | 30 Marks  |  |  |  |  |
|          | answered from Six questions.               |              |           |  |  |  |  |
|          | TOTAL                                      |              | 100 Marks |  |  |  |  |

#### **Question pattern – Written Test Theory**

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

#### SCHEME OF EVALUATION

| Part                               | Part Description                    |    |  |  |  |  |
|------------------------------------|-------------------------------------|----|--|--|--|--|
|                                    | PART A – Drafting Practices         |    |  |  |  |  |
| A                                  | Command / Creation                  | 10 |  |  |  |  |
| В                                  | 2D View with Dimensions             | 15 |  |  |  |  |
| С                                  | Printout                            | 5  |  |  |  |  |
| PART B – Solid modelling Practices |                                     |    |  |  |  |  |
| D                                  | Creation Part Modelling             | 10 |  |  |  |  |
| E                                  | CAD Modelling (3D)                  | 15 |  |  |  |  |
| F                                  | Assembly of the parts               | 20 |  |  |  |  |
| G                                  | Printout                            | 5  |  |  |  |  |
| Н                                  | Written test (Theory Portions only) | 10 |  |  |  |  |
| I                                  | Viva Voce                           | 10 |  |  |  |  |
|                                    | TOTAL MARKS                         |    |  |  |  |  |

**Note:** For the written test 10 MCQ shall be asked from the theory portions.

# Syllabus contents

| Theory Portion                                                                        |    |
|---------------------------------------------------------------------------------------|----|
| SECTIONAL VIEWS                                                                       | 15 |
| Sectioning - sectional views - representation of sectional plane - hatching -         |    |
| inclination - spacing - hatching large areas - hatching adjacent parts - full section |    |
| - half section - types of half sections - conventional representation of materials in |    |
| section.                                                                              |    |
| GEOMETRIC DIMENSIONING AND TOLERANCES.                                                |    |
| Importance of GD&T - Tolerance specification and interpretation - Tolerance symbols   |    |
| - Features - Datum plane and Axis - Shaft basis and hole basis system.                |    |



| Material Condition Modifiers. Maximum Material Condition (MMC) - Least Materia      |    |  |  |
|-------------------------------------------------------------------------------------|----|--|--|
| Condition (LMC) - Feature Control Frames                                            |    |  |  |
| Manual Drawing Practice                                                             |    |  |  |
| Detailed drawings of the following machine components will be given to students to  | 15 |  |  |
| draw the assembled views. Only the assembled Front view (Without section / Full     |    |  |  |
| Section / Half Section) and Top view or Side view (Without section / Full Section / |    |  |  |
| Half Section) with dimensions and Bill of materials in the Drawing Sheet.           |    |  |  |
| Note: All the exercises drawing sheet should be submitted for the model and end     |    |  |  |
| semester examination as a record of work done.                                      |    |  |  |
| COMPUTER AIDED DRAFTING (CAD) PRACTICES                                             |    |  |  |
| PART A - Drafting Practices:                                                        | 15 |  |  |
| 2D Drafting Practices - Draw the front view of the assembled drawing of the         |    |  |  |
| components with dimensions.                                                         |    |  |  |
| PART B - Solid modelling Practices:                                                 | 15 |  |  |
| Detailed drawings of the machine components will be given to students to create the |    |  |  |
| solid modelling and assemble using any CAD software in the computer and take the    |    |  |  |
| printout.                                                                           |    |  |  |
| Machine Components for the Practical Exercises                                      |    |  |  |
| 1. Sleeve and Cotter Joint.                                                         |    |  |  |
| 2. Plummer Block.                                                                   |    |  |  |
| 3. Flange Coupling.                                                                 |    |  |  |
| 4. Bushed Bearing.                                                                  |    |  |  |
| Practice + Test + Revision                                                          | 15 |  |  |



#### Suggested List of Students Activity:

- Students should practice production drawing with the GD&T representation.
- Modelling competitions can be arranged.

#### Text and Reference Books:

- 1. A beginner's guide to 3D modeling by Cameron Coward
- 2. Solidworks 2022 step by step guide by Amit Bhatt and Mark Wiley

#### Web-based/Online Resources:

- https://www.autodesk.in/campaigns/autocad-tytorials
- https://www.mycadsite.com/tutorials.html
- NPTEL Lecturers

#### Equipment / Facilities required to conduct the Practical Course.

- 1. Personal computer 30 Nos.
- 2. Printer 1 No.
- 3. Required Software: CAD Package/ Parametric Software packages Sufficient to the strength.



| 1020233540 | PRODUCTION DRAWING & MODELLING | L | Т | Ρ | С |
|------------|--------------------------------|---|---|---|---|
| PRACTICUM  |                                | 1 | 0 | 4 | 3 |

#### END SEMESTER EXAMINATIONS - PRACTICAL EXAM

Note: All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all exercises for 100 Marks as per the pattern. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used.

Practical documents should be submitted for the End Semester Examination with a bonafide certificate.

| Part | Part Description                    |     |  |  |  |  |  |
|------|-------------------------------------|-----|--|--|--|--|--|
|      | PART A – Drafting Practices         |     |  |  |  |  |  |
| A    | Command / Creation                  | 10  |  |  |  |  |  |
| В    | 2D View with Dimensions             | 15  |  |  |  |  |  |
| С    | Printout                            | 5   |  |  |  |  |  |
|      | PART B – Solid modelling Practices  |     |  |  |  |  |  |
| D    | Creation Part Modelling             | 10  |  |  |  |  |  |
| E    | CAD Modelling (3D)                  | 15  |  |  |  |  |  |
| F    | Assembly of the parts               | 20  |  |  |  |  |  |
| G    | Printout                            | 5   |  |  |  |  |  |
| н    | Written test (Theory Portions only) | 10  |  |  |  |  |  |
| I    | Viva Voce                           | 10  |  |  |  |  |  |
|      | TOTAL MARKS                         | 100 |  |  |  |  |  |

#### SCHEME OF EVALUATION

**Note:** For the written test 10 MCQ shall be asked from the theory portions.



| 1020233540 | PRODUCTION DRAWING & MODELLING | L | Т | Ρ | С |
|------------|--------------------------------|---|---|---|---|
| PRACTICUM  |                                | 1 | 0 | 4 | 3 |

# **EXERCISE DRAWINGS**







| 1020233540 | PRODUCTION DRAWING & MODELLING | L | Т | Р | C |
|------------|--------------------------------|---|---|---|---|
| PRACTICUM  |                                | 1 | 0 | 4 | 3 |







CASTING - 1- OFF

# 1 0 4 3

Plummer Block (Pedestal Bearing)



ALL DIMENSIONS ARE IN MM



| 1020233540 | PRODUCTION DRAWING & MODELLING | L | Т | Р | С |
|------------|--------------------------------|---|---|---|---|
| PRACTICUM  |                                | 1 | 0 | 4 | 3 |











# DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 REGULATION 2023

DME

| 1020233640 | MACHINE TOOL TECHNOLOGY | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  |                         | 1 | 0 | 4 | 3 |

#### Introduction:

To meet out Globalization, technological advances and to sustain ourselves we have to explore the knowledge about machine tools covering the various operations and skill sets required for the development of a nation and its people.

#### **Course Objectives:**

- 1. Expose to the Concept and Basic Mechanics of Metal Cutting
- 2. Familiarise with working of Standard Machine Tools such as Lathe and Milling.
- 3. Familiarise with the working of the Grinding Process.

#### **Course Outcomes:**

- CO1: Discuss with various mechanics of metal cutting and operations performed in Lathe
- CO2: Illustrate various milling operations
- CO3:Describe the various grinding processes.
- CO4: Manufacture of gears using milling machine
- CO5: Perform finishing operations using grinding machines.

#### **Pre-requisites:**

Applied science, Basic workshop practice



| 1020233640 | MACHINE TOOL TECHNOLOGY | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  |                         | 1 | 0 | 4 | 3 |

#### CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   |     |     | 3   |     |     |     |
| C02     | 3   |     |     | 3   |     |     |     |
| C03     | 3   |     |     | 3   |     |     |     |
| CO4     | 3   |     |     | 3   |     |     |     |
| C05     | 3   |     |     | 3   |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

#### **Assessment Methodology:**

|                       | Co                                       | End                                               |                        |                   |                                       |
|-----------------------|------------------------------------------|---------------------------------------------------|------------------------|-------------------|---------------------------------------|
|                       | CA1                                      | CA2                                               | CA3                    | CA4               | Semester<br>Examination<br>(60 marks) |
| Mode                  | Practical<br>Test                        | Practical<br>Test                                 | Written Test<br>Theory | Practical<br>Test | Practical<br>Examination              |
| Portion               | Cycle I<br>Exercises<br>50%<br>Exercises | Cycle II<br>Exercises<br>Another 50%<br>Exercises | All Units              | All Exercises     | All Exercises                         |
| Duration              | 2 Periods                                | 2 Periods                                         | 3 Hours                | 3 Hours           | 3 hours                               |
| Exam Marks            | 60                                       | 60                                                | 100                    | 100               | 100                                   |
| Converted to<br>Marks | 10                                       | 10                                                | 15                     | 15                | 60                                    |
| Marks                 | 1                                        | 0                                                 | 15                     | 15                | 60                                    |
| Tentative<br>Schedule | 7th Week                                 | 14th Week                                         | 15th Week              | 16th Week         |                                       |

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment.



| 1020233640 | MACHINE TOOL TECHNOLOGY | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  |                         | 1 | 0 | 4 | 3 |

The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

#### The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or printed manual or a file with documents. Students should write the procedure and draw the sketch manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| PART | DESCRIPTION                               | MARKS |
|------|-------------------------------------------|-------|
| Α    | Aim / Tools required                      | 5     |
| В    | Preparation / Procedure                   | 20    |
| С    | Operation / Machining / Measurements      | 25    |
|      | TOTAL                                     | 50    |
| D    | Practical Documents (As per the portions) | 10    |
|      |                                           | 60    |

#### SCHEME OF EVALUATION

• **CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



| 1020233640 | MACHINE TOOL TECHNOLOGY | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  |                         | 1 | 0 | 4 | 3 |

## **Question pattern – Written Test Theory**

| Description |                                                        | Marks        |          |  |
|-------------|--------------------------------------------------------|--------------|----------|--|
| Part – A    | 30 MCQ from the complete theory portions.              | 30 X 1 Mark  | 30 Marks |  |
| Part – B    | Seven Questions to be answered out of 10<br>Questions. | 7 X 10 Marks | 70 Marks |  |
|             | 100 Marks                                              |              |          |  |

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

#### SCHEME OF EVALUATION

#### Model Practical Examination and End Semester Examination - Practical Exam

| PART | DESCRIPTION                          | MARKS |
|------|--------------------------------------|-------|
| Α    | Aim / Tools required                 | 5     |
| В    | Preparation / Procedure              | 20    |
| С    | Operation / Machining / Measurements | 25    |
| D    | Finish / Dimensions                  | 10    |
| E    | Written Test (Theory portions)       | 30    |
| F    | Viva voce                            | 10    |
|      | TOTAL                                | 100   |

**Note:** For the written test 30 MCQ shall be asked from the theory portions.


# Syllabus Contents

| Theory Portion                                                                            | Period |
|-------------------------------------------------------------------------------------------|--------|
| Chapter 1:                                                                                | 15     |
| Theory of Metal Cutting: Chip Formation, Orthogonal Cutting- Oblique Cutting - Tool       |        |
| Geometry – Tool nomenclature – Cutting tool materials - cutting parameters. Lathe         |        |
| - Centre Lathe: Introduction - specifications –machining operations done on lathe.        |        |
| Chapter 2:                                                                                |        |
| Milling - Milling cutters classification only-Milling operations-types-straddle milling - |        |
| gang milling.Indexing-Indexing plate – Indexing methods - simple indexing,                |        |
| differential indexing.Generating Process: gear shaper - gear hobbing - principle of       |        |
| operation only.                                                                           |        |
| Chapter 3:                                                                                |        |
| Grinding: Grinding Process – Cylindrical Grinding, Surface Grinding, Centre less          |        |
| Grinding-principles of operation only. – grinding wheels – abrasives - natural and        |        |
| artificial diamond wheels - types of bonds - grit, grade and structure of wheels -        |        |
| wheel shapes and sizes - standard marking systems of grinding wheels - selection          |        |
| of grinding wheel - mounting of grinding wheels - Dressing and Truing of wheels -         |        |
| Balancing of grinding wheels.                                                             |        |
| Practical Exercises                                                                       | •      |
| I. LATHE                                                                                  | 50     |
| 1. Grooving and Taper Turning.                                                            |        |
| 2. LH Thread cutting.                                                                     |        |
| 3. RH Thread cutting.                                                                     |        |
| 4. Bush: Turning & Drilling                                                               |        |
| 5. Eccentric Turning.                                                                     |        |
| II. MILLING MACHINE                                                                       |        |
| 6. Make Spur Gear using milling machine by simple Indexing                                |        |
| 7. Make helical gear using milling machine                                                |        |



| 1020233640 | MACHINE TOOL TECHNOLOGY | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  |                         | 1 | 0 | 4 | 3 |

| III. GRINDING                                                             |    |
|---------------------------------------------------------------------------|----|
| 8. Grind a plain surface using surface Grinder                            |    |
| 9. Make progressive type plug gauge using cylindrical grinding machine    |    |
| 10. Make a turning tool / milling cutter using a tool and cutter grinder. |    |
| Test + Revision                                                           | 10 |
| Total                                                                     | 75 |

Cycle - I Exercise 1, 2, 3, 6, 8 - 5 Exercises

Cycle - II Exercise 4, 5, 7, 9, 10 - 5 Exercises

## Suggested List of Students Activity:

- 1. Observe the Lathe machine in the institute and study its specifications. List the possible operations that can be done on that machine.
- 2. Study different reciprocating machines available and draw the line sketch to study the working principle.
- 3. Study the types of grinding wheels available for industrial applications. Classify the abrasive materials and its properties.

# Text and Reference Books:

- 1. CHAPMAN W. A. J Workshop Technology Part 1-5 th edition- CBS-2001.
- 2. CHAPMAN W. A. J Workshop Technology Part 2-4 th Edition-CBS-2007.
- 3. R S Khurmi A Textbook Of Workshop Technology : Manufacturing Processes -16 TH Edition- S Chand & amp; Company-2021.

## Web-based Online Resources:

- https://www.youtube.com/watch?v=6ISddRRHAhA Introduction to Manufacturing Process Technology - NPTEL IIT Kanpur.
- https://www.youtube.com/watch?v=B8w-00i0Yf4 Gear Manufacturing NPTEL IIT Kharagpur.
- https://www.youtube.com/watch?v=kb0RowB8Myo Introduction of Machining Processes- NPTEL IIT Kanpur.



## END SEMESTER EXAMINATION – PRACTICAL EXAM

Note:

All the exercises should be given in the question paper and students are allowed to select by a lot or the question paper allotted from the DOTE shall be used.

Practical document should be submitted for the examination with a bonafide certificate.

## SCHEME OF EVALUATION

| PART | DESCRIPTION                          | MARKS |
|------|--------------------------------------|-------|
| Α    | Aim / Tools required                 | 5     |
| В    | Preparation / Procedure              | 20    |
| С    | Operation / Machining / Measurements | 25    |
| D    | Finish / Dimensions                  | 10    |
| E    | Written Test (MCQ question)          | 30    |
| F    | Viva voce                            | 10    |
|      | TOTAL                                | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



| 1020233640 | MACHINE TOOL TECHNOLOGY | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  |                         | 1 | 0 | 4 | 3 |

# Exercises drawing:

All the dimensions are in mm.

## I. LATHE

Make the following jobs in the lathe. Raw material :\_\_\_\_\_ M.S. Round Rod

1. Grooving and Taper Turning.



2. LH Thread cutting.



3. RH Thread cutting.





| 1020233640 | MACHINE TOOL TECHNOLOGY | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  |                         | 1 | 0 | 4 | 3 |

# 4. Bush: Turning & Drilling



# 5. Eccentric Turning.



## II. MILLING

Make the following jobs in the milling machine.

Raw material :\_\_\_\_\_ M.S. Round Rod

6. Make Spur Gear using milling machine by simple Indexing





| 1020233640 | MACHINE TOOL TECHNOLOGY | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  |                         | 1 | 0 | 4 | 3 |

7. Make helical gear using milling machine



## III. GRINDING

Make the following jobs in the Grinding machine using given raw material.

8. Grind a plain surface using surface Grinder



9. Make progressive type plug gauge using cylindrical grinding machine





| 1020233640 | MACHINE TOOL TECHNOLOGY | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  |                         | 1 | 0 | 4 | 3 |

10. Make a turning tool / milling cutter using tool and cutter grinder.





# List of Equipments Required

| SI. No. | Name of the Machine / Equipment / Instrument | Quantity Required   |
|---------|----------------------------------------------|---------------------|
| 1       | Lathe                                        | 10 Nos.             |
| 2       | Universal Milling Machine                    | 2 Nos.              |
| 3       | Surface Grinding Machine                     | 1 No.               |
| 4       | Cylindrical Grinding Machine                 | 1 No.               |
| 5       | Tool and Cutter Grinding Machine             | 1 No.               |
| 6       | Safety Glasses                               | 10 Nos.             |
| 7       | Tools and Measuring Instruments              | Sufficient Quantity |
| 8       | Consumables                                  | Sufficient Quantity |



#### Introduction:

Use of innovative technologies to create existing products and the creation of new products. Advanced manufacturing can include production activities that depend on information, automation, computation, software, sensing, and networking

#### **Course Objectives:**

- Explain the different methods of plastic manufacturing processes
- Explain the various concepts of modern machining, super finishing process and surface treatment
- To make acquainted the various unconventional manufacturing processes
- Write part program for manufacturing components in CNC machines
- Explain the rapid prototyping technologies in manufacturing

#### **Course Outcomes:**

On successful completion of this course, the student will be able to

CO1: Describe the various methods of plastic manufacturing

CO2: Explain the modern machining processes, super finishing processes and various surface treatment methods

CO3: Describe the unconventional Machining processes

CO4: Explain the CNC Machines and ability to apply "G codes" and "M codes in CNC programming

CO5: Apply the rapid prototyping technologies in manufacturing

#### **Pre-requisites:**

Production Technology, Machine Tools, Metal Cutting, Computer applications



| 1020234110 | ADVANCED MANUFACTURING | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| THEORY     | TECHNOLOGY             | 3 | 0 | 0 | 3 |

## **CO/PO Mapping**

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 2   | 2   | 1   |     |     |     |     |
| C02     | 2   | 2   | 1   |     |     |     |     |
| C03     | 2   | 3   | 1   |     |     |     |     |
| C04     | 2   | 2   | 1   |     |     |     |     |
| C05     | 2   | 2   | 1   |     |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

## Instructional Strategy:

- Engage and Motivate: Teachers should actively engage students to boost their learning confidence
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations, and real-world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome- and employability-based.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.



| 1020234110 | ADVANCED MANUFACTURING | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| THEORY     | TECHNOLOGY             | 3 | 0 | 0 | 3 |

# Assessment Methodology

|                       | C                           | 5)                                     | End Semester                         |                      |                           |
|-----------------------|-----------------------------|----------------------------------------|--------------------------------------|----------------------|---------------------------|
|                       | CA1                         | CA2                                    | CA3                                  | CA4                  | Examination<br>(60 marks) |
| Mode                  | Written test<br>(Two units) | Written test<br>(Another Two<br>units) | Quiz<br>MCQ<br>(Online /<br>Offline) | Model<br>Examination | Written<br>Examination    |
| Duration              | 2 Periods                   | 2 Periods                              | 1 Hour                               | 3 Hours              | 3 Hours                   |
| Exam Marks            | 50                          | 50                                     | 60                                   | 100                  | 100                       |
| Converted<br>to       | 15                          | 15                                     | 5                                    | 20                   | 60                        |
| Marks                 | 15                          |                                        | 5                                    | 20                   | 60                        |
| Tentative<br>Schedule | 6th Week                    | 12th Week                              | 13-14th Week                         | 16th Week            |                           |

**CA1 and CA2:** Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

**CA3:** 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.



| 1020234110 | ADVANCED MANUFACTURING | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| THEORY     | TECHNOLOGY             | 3 | 0 | 0 | 3 |

**CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

#### **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

## Syllabus Contents

| Unit I                                                                          | Types of plastics and processing of plastics                              |   |  |  |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|---|--|--|
| Types of                                                                        | Plastics: Engineering plastics - thermosets - comparison of               | 9 |  |  |
| thermoplas                                                                      | stic and thermosetting plastics - composite - structural foam, elastomers |   |  |  |
| - polymer al                                                                    | lloys and liquid crystal polymers.                                        |   |  |  |
| Processing                                                                      | of Plastics                                                               |   |  |  |
| Extrusion -                                                                     | single screw extrusion - twin screw extruders and types - Injection       |   |  |  |
| moulding types: Plunger type - Reciprocating screw injection - structural foam  |                                                                           |   |  |  |
| injection mould - sandwich moulding - gas injection moulding - calendaring and  |                                                                           |   |  |  |
| rotational m                                                                    | noulding. Design consideration for plastic components.                    |   |  |  |
| Unit II                                                                         | Modern Machining ,Super finishing and Surface treatment processes         |   |  |  |
| Modern Ma                                                                       | achining Processes:                                                       | 9 |  |  |
| Precision a                                                                     | and ultra precision machining - Micro and nano machining and              |   |  |  |
| High-speed Machining – hot machining-basic principles, working, applications,   |                                                                           |   |  |  |
| advantages                                                                      |                                                                           |   |  |  |
| Super finishing processes : introduction- working principle of Honing - lapping |                                                                           |   |  |  |
| -burnishing                                                                     | g – polishing –buffing – advantages - applications                        |   |  |  |



| 1020234110 | ADVANCED MANUFACTURING | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| THEORY     | TECHNOLOGY             | 3 | 0 | 0 | 3 |

| Surface treatment processes: Introduction – working principle – surface hardening    |  |  |  |  |
|--------------------------------------------------------------------------------------|--|--|--|--|
| - shot peening - galvanizing – powder coating - thermal spraying - Vapour            |  |  |  |  |
| deposition Processes types - Chemical Vapour Deposition (CVD) – Physical Vapour      |  |  |  |  |
| Deposition (PVD) - sputtering – Electroplating – cladding – hot dipping – painting - |  |  |  |  |
| advantages – applications.                                                           |  |  |  |  |
| Unit III Unconventional Machining Processes                                          |  |  |  |  |
| Introduction – classification - construction and working principle of abrasive jet 8 |  |  |  |  |
| machining (AJM) – water jet machining (WJM) – ultrasonic machining (USM) –           |  |  |  |  |
| electrical discharge machine (EDM) - electron beam machining (EBM) – laser beam      |  |  |  |  |
| machining (LBM) – plasma arc machining (PAM) – Chemical Machining (CHM) –            |  |  |  |  |
| Electro Chemical Machining (ECM) -advantages – disadvantages and applications.       |  |  |  |  |
| Unit IV CNC Machines and CNC Programming                                             |  |  |  |  |
| CNC machines: 11                                                                     |  |  |  |  |
| Numerical control – definition – working principle of a CNC system - advantages of   |  |  |  |  |
| CNC machines - difference between NC and CNC - construction and working              |  |  |  |  |
| principle of turning centre – construction and working principle of machining centre |  |  |  |  |
| - machine axes conventions turning centre and machining centre - coordinate          |  |  |  |  |
| measuring machine (CMM) – construction and working principle.                        |  |  |  |  |
| CNC Programming:                                                                     |  |  |  |  |
| Introduction – Cartesian coordinate system – Polar coordinate system – Absolute      |  |  |  |  |
| and incremental positioning – Purpose of G and M codes. – CNC program.               |  |  |  |  |
| Procedure - Homing position – Offset setting -Work offset setting procedure – Tool   |  |  |  |  |
| offset - CNC turning program using linear interpolation and circular interpolation   |  |  |  |  |
| CNC milling program using linear interpolation and circular interpolation            |  |  |  |  |
| compensation                                                                         |  |  |  |  |



THEORY

| Unit V                                                                              | Rapid Prototyping                                                       |    |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----|
| Introductior                                                                        | - Classification – subtractive – additive – advantages and applications | 8  |
| – materials- Working Principles, Methods, Stereolithography, Laser Sintering, Fused |                                                                         |    |
| Deposition Method, 3D printing - Working Principle - Applications and Limitations,  |                                                                         |    |
| Rapid tooling, Overview of other techniques in rapid manufacturing.                 |                                                                         |    |
|                                                                                     | TOTAL HOURS                                                             | 45 |

## Suggested List of Students Activity:

- Presentation/Seminars by students on any recent technological developments based on the course
- Online MCQ have to be conducted for all the five units.
- Blended learning activities to explore the recent trends and developments in the field.

### Text and Reference Books:

- 1. V. K. Jain, Advanced Machining Processes, 1 st edition , Allied Publications, 2010.
- 2. Mikell P. Groover , Automation, Production Systems, and Computer- Integrated Manufacturing, 3 rd edition, Pearson Education Asia, 2008.
- 3. P. Radhakrishnan, S. Subramanyam, CAD/CAM/CIM,2 nd edition, New Age International,2008.

#### Web-based/Online Resources:

- https://archive.nptel.ac.in/courses/112/107/112107078/
- https://onlinecourses.nptel.ac.in/noc24\_me72/preview

## END SEMESTER QUESTION PATTERN - Theory Exam

#### Duration: 3 Hrs.

#### Max. Marks: 100

**Note:** Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

## Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.

| 1020234230 | FLUID MECHANICS | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 2 | 0 | 2 | 3 |

### Introduction:

The principles of fluid mechanics play a vital role in various aspects of our daily lives, influencing everything from the functioning of essential machines to the natural phenomena that shape our world. Understanding the significance of fluid mechanics helps us appreciate its impact on diverse fields. It is a cornerstone of modern engineering and science, with profound implications for numerous aspects of our lives. Its principles enable advancements in technology, contribute to environmental sustainability, and enhance our understanding of the natural world.

### **Course Outcomes:**

On successful completion of this course, the student will be able to

- CO1: Describe the measurement of fluid pressure and its applications.
- CO2: Measure the flow rate of fluid by using venturi meter and orifice meter.
- CO3: Compute the friction factor for the pipeline.
- CO4: Analyse the performance of turbines.
- CO5: Evaluate the performance of pumps

## **Pre-requisites:**

Mathematical skills, Mechanics.

## **CO/PO Mapping**

| CO / PO | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | 1   | -   | 3   |     |     |     |
| C02     | 3   | 1   | -   | 3   |     |     |     |
| C03     | 3   | 1   | -   | 3   |     |     |     |
| C04     | 3   | 1   | -   | 3   |     |     |     |
| C05     | 3   | 1   | -   | 3   |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation



| 1020234230 | FLUID MECHANICS | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 2 | 0 | 2 | 3 |

### Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies

|                       | Co                                           | ontinuous Asses                                  | sment (40 marks)                  | )                                                | End                                                        |
|-----------------------|----------------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------------|------------------------------------------------------------|
|                       | CA1                                          | CA2                                              | CA3                               | CA4                                              | Examination<br>(60 marks)                                  |
| Mode                  | Written Test<br>Theory<br>(Any Two<br>Units) | Written Test<br>Theory<br>(Another Two<br>Units) | Practical Test<br>(All Exercises) | Written Test<br>(Complete<br>Theory<br>Portions) | Written<br>Examination<br>(Complete<br>Theory<br>Portions) |
| Duration              | 2 Periods                                    | 2 Periods                                        | 3 Hours                           | 3 Hours                                          | 3 Hours                                                    |
| Exam Marks            | 50                                           | 50                                               | 100                               | 100                                              | 100                                                        |
| Converted to          | 10                                           | 10                                               | 15                                | 15                                               | 60                                                         |
| Marks                 | 10                                           |                                                  | 15                                | 15                                               | 60                                                         |
| Tentative<br>Schedule | 6th Week                                     | 12th Week                                        | 15th Week                         | 16th Week                                        |                                                            |

## Assessment Methodology:



| 1020234230 | FLUID MECHANICS | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 2 | 0 | 2 | 3 |

Note:

• CA1 and CA2: Assessment written test should be conducted for 50 Marks. The marks scored will be converted to 10 Marks for each test. Best of one will be considered for the internal assessment of 10 Marks.

CA1 and CA2, Assessment written test should be conducted for two units as below.

Answer any Five questions. (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions.

Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

• **CA 3:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one experiment by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded for 100 marks will be converted to 15 Marks for the internal mark.

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. Each exercise/experiment should be evaluated for 10 Marks. The total marks awarded should be converted to 30 Marks for the practical test as per the scheme of evaluation as below.

## The details of the practical documents to be prepared as per the instruction below.

Each experiment observation and calculations should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The student should write the reading and calculations and the result and graph should be prepared manually.

The evaluated practical document should be submitted for the Practical Test (CA3). The mark scored by the students should be converted to 30 marks. The same should be included as per the allocation in the practical test.



| 1020234230 | FLUID MECHANICS | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 2 | 0 | 2 | 3 |

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

## **SCHEME OF EVALUATION - Practical Test**

| SI.No. | Description                               | Marks |
|--------|-------------------------------------------|-------|
| A      | Aim / Apparatus required                  | 10    |
| В      | Procedure / Observation / Tabular coloumn | 20    |
| С      | Formula / Calculation                     | 20    |
| D      | Result / Graph                            | 10    |
| E      | Practical document (All Experiments)      | 30    |
| F      | Viva Voce                                 | 10    |
|        | Total                                     | 100   |

**CA4:** Model examination should be conducted for complete theory portions as per the end semester question pattern. The marks awarded should be converted to 15 marks for the internal assessment.

## Question Pattern:

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.



| 1020234230 | FLUID MECHANICS | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 2 | 0 | 2 | 3 |

# **Syllabus Contents**

| Unit I                                                                          | FLUID AND FLUID PROPERTIES                                            |   |  |  |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|---|--|--|
| Theory:                                                                         |                                                                       | 5 |  |  |
| Concept a                                                                       | nd classification of fluid, Properties of fluid - Density - Specific  |   |  |  |
| weight - S                                                                      | pecific volume - Specific gravity - Viscosity - Surface tension -     |   |  |  |
| Cohesion                                                                        | & Adhesion – Capillarity - Bulk modulus of elasticity - Vapor         |   |  |  |
| Pressure -                                                                      | Description and Simple problems.                                      |   |  |  |
| Practical:                                                                      |                                                                       | 2 |  |  |
| 1. Demons                                                                       | trate various fluid properties viscosity, surface tension, cohesion & |   |  |  |
| Adhesion a                                                                      | and capillarity.                                                      |   |  |  |
| Unit II                                                                         | PRESSURE MEASURING DEVICES                                            |   |  |  |
| Theory:                                                                         |                                                                       | 5 |  |  |
| Pressure h                                                                      | ead- atmospheric gauge and vacuum pressure – Classification of        |   |  |  |
| pressure measuring devices - Working and application of pressure measuring      |                                                                       |   |  |  |
| devices: Piezometer- Simple U tube manometers – Differential U tube             |                                                                       |   |  |  |
| manomete                                                                        | rs – problems - Pressure Gauges - Description.                        |   |  |  |
| Practical:                                                                      |                                                                       | 3 |  |  |
| 2. Measur                                                                       | e the fluid pressure using a simple manometer and pressure            |   |  |  |
| gauge. Fin                                                                      | d the pressure difference using differential manometer.               |   |  |  |
| Unit III                                                                        | FLUID KINEMATICS & FLUID DYNAMICS                                     |   |  |  |
| Theory:                                                                         |                                                                       | 8 |  |  |
| Fluid Kine                                                                      | matics: Streamline, path line and streak lines and stream tube,       |   |  |  |
| classificati                                                                    | on of fluid flows-Reynolds number, steady & unsteady, uniform,        |   |  |  |
| non-uniform, laminar, turbulent, rotational, and irrotational flows-equation of |                                                                       |   |  |  |
| continuity for one dimensional flow.                                            |                                                                       |   |  |  |
| Fluid Dynamics: Energies of fluid-Bernoulli's equations for flow along a        |                                                                       |   |  |  |
| streamline                                                                      | - Description and simple problems - Applications of Bernoulli's       |   |  |  |
| theorem - '                                                                     | Venturimeter and Orificemeter - Description.                          |   |  |  |



| 1020234230                                                                          | 1020234230 FLUID MECHANICS                                |         | Т       | Р    | С |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------|---------|---------|------|---|
| PRACTICUM                                                                           | PRACTICUM                                                 |         |         |      | 3 |
|                                                                                     | •                                                         |         | •       | 1    |   |
| Practical:                                                                          |                                                           |         |         |      | 6 |
| 3. Verify Be                                                                        | rnoulli's theorem.                                        |         |         |      |   |
| 4. Measure                                                                          | the discharge of the fluid flow using venturi meter or    | Orifice | Meter.  |      |   |
| Unit IV                                                                             | FLOW THROUGH PIPES                                        |         |         |      |   |
| Theory:                                                                             |                                                           |         |         |      | 4 |
| Introduction to pipe and pipe flow - Major and minor losses - Reynold's experiment, |                                                           |         |         |      |   |
| friction factor, Darcy's and Chezy's equations - Description only, Moody's chart-   |                                                           |         |         |      |   |
| Water ham                                                                           | mer and cavitation, its cause, effect, and remedies.      |         |         |      |   |
| Practical:                                                                          |                                                           |         |         |      |   |
| 5. Find the                                                                         | friction factor for the given pipeline.                   |         |         |      |   |
| Unit V                                                                              | HYDRAULIC MACHINES                                        |         |         |      |   |
| Theory:                                                                             |                                                           |         |         |      | 8 |
| Reciprocat                                                                          | ing Pump: classifications - single and Double Acti        | ing Re  | ciproca | ting |   |
| Pump - Working - Discharge, coefficient of discharge, Air vessels.                  |                                                           |         |         |      |   |
| Centrifugal Pump: Classification - working of Single stage Centrifugal Pump - Main  |                                                           |         |         |      |   |
| components of centrifugal pump - head of pump - priming - self priming - pumps      |                                                           |         |         |      |   |
| in series &                                                                         | narallel - losses in centrifugal numps - selection of nur | <br>nn  | 5 Pu    |      |   |
| in series a paraller - losses in centinugal pullips - selection of pullip.          |                                                           |         |         |      |   |

Hydraulic Turbines: Introduction - Classification of turbines, impulse turbine construction and working of impulse turbine - reaction turbines - construction and working of Francis turbine and Kaplan turbine - draft tube and its types – surge tank - selection of hydraulic turbines. **Practical:** 

6. Perform a test on the reciprocating pump or centrifugal pump test rig and find the efficiency.

7. Perform a test on a hydraulic turbine test rig and find the efficiency.

| Test + Revision | 10 |
|-----------------|----|
| TOTAL HOURS     | 60 |
|                 |    |



# DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 REGULATION 2023

6

## Suggested List of Students Activity:

- Compare the following liquids concerning their density (for the same mass, compare the volume) (1) Petrol (2) Water (3) Edible oil (4) Caster oil (5) Mercury
- Compare the following liquids concerning their viscosity (for the same temperature, compare the velocity) (1) Petrol (2) Water (3) Edible oil (4) Caster oil (5) Mercury
- Calculate the water weight when your home's water tank is completely filled with water.
- Observe the working of a Hydraulic Jack and relate it with Pascal's law.
- Observe the discharge water condition from a pipe at the time of car washing with a nozzle and without a nozzle and explain the difference considering Bernoulli's equation.
- Draw a line diagram of the water supply & distribution line of your hydraulic lab and indicate the source of major and minor losses in it.
- Visit the manufacturer's website for hydraulic pumps, collect the catalog, and select a suitable pump for your home application.
- Prepare a demonstration model of the hydroelectric power plant.
- Prepare a demonstration model of the hydraulic devices.
- Observe pressure gauges used by roadside tire workers, blood pressure measurement by doctors and pressure gauges mounted on a turbine test rig and write a report on it.
- Prepare a report on real life applications of hydraulic systems and pneumatic systems at your college.

## Text Books & Reference Books:

- 1. A Textbook of Hydraulics, Fluid Mechanics and Hydraulic Machines, R.S. Khurmi, -Edn.18, S.Chand & Co., New Delhi.
- A Textbook of Fluid Mechanics and Hydraulic Machines by R. K Rajput and and S.Chand & Co, New Delhi.
- 3. Hydraulic Machines, Jagadishlal, , Metropolitan Book Co. Pvt. Ltd., New Delhi.
- 4. Fluid Mechanics and Hydraulic Machines, R. K. Bansal, Laxmi Publications Pvt., Ltd, New Delhi.



#### Web-based/Online Resources:

- 1. https://nptel.ac.in/courses/112105206
- 2. https://nptel.ac.in/courses/112104117
- 3. https://nptel.ac.in/courses/112103249
- 4. https://www.classcentral.com/course/youtube-fluid-mechanics-concept-derivationvideos-53034
- 5. https://fmc-nitk.vlabs.ac.in/fluid-machinery/exp/centrifugal-pump/index.html
- 6. https://me.iitp.ac.in/Virtual-Fluid-Laboratory/
- 7. https://eerc03-iiith.vlabs.ac.in/List%20of%20experiments.html
- 8. https://fm-nitk.vlabs.ac.in/List%20of%20experiments.html

#### Equipment / Facilities required for conducting the Practical Course.

| 1. | Pressure Measuring Devices                       | Sufficient quantity. |
|----|--------------------------------------------------|----------------------|
| 2. | Bernoulli's theorem experimental set up          | 1 no.                |
| 3. | Venturi Meter or Orificemeter experimental setup | 1 no.                |
| 4. | Pipe friction factor experimental set up         | 1 no.                |
| 5. | Centrifugal Pump experimental set up (or)        |                      |
|    | Reciprocating Pump experimental set up           | 1 no.                |
| 6. | Hydraulic turbine test rig.                      | 1 no.                |
|    | Demoined in statute and search the               |                      |

Required instruments and consumables.

#### END SEMESTER QUESTION PATTERN - Theory Exam

Max. Marks: 100

#### Duration: 3 Hrs.

**Note:** Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

#### Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.



| 1020234320 | ADVANCED MANUFACTURING | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| PRACTICAL  | TECHNOLOGY PRACTICAL   | 0 | 0 | 4 | 2 |

### Introduction:

They are able to prepare part programs and operate CNC lathe and Milling machines. They are ready to apply the practical knowledge on 3D printing and robotics to real industrial environment

### **Course Objectives:**

- Features and selection of CNC turning and milling machines.
- Practice in part programming and operation of CNC turning machines, subroutine techniques and use of cycles.
- Study the components of the CNC machine and machine settings
- Machining the components by the CNC machines
- Study the working of 3D printing and robotics and its applications

#### Course Outcomes:

On successful completion of this course, the student will be able to

- CO1: Recall the safety procedure to be followed shop floor.
- CO2: Produce components on CNC Turning.
- CO3: Create components on CNC Milling.
- CO4: Develop components using 3D printer.
- CO5. Generate robot programming for different applications.

#### **Pre-requisites:**

Basic knowledge on working principle CNC machines,3D printing, Robots Basic working practice of Lathe & Milling machines



| 1020234320 | ADVANCED MANUFACTURING | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| PRACTICAL  | TECHNOLOGY PRACTICAL   | 0 | 0 | 4 | 2 |

## **CO/PO Mapping**

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 2   | 2   |     | 3   | 1   |     |     |
| C02     | 2   | 2   |     | 3   | 1   |     |     |
| C03     | 2   | 3   |     | 3   | 1   |     |     |
| C04     | 2   | 2   |     | 3   | 1   |     |     |
| C05     | 2   | 2   |     | 3   | 1   |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy:

- o Engage and Motivate: Teachers should actively engage students to boost their learning confidence
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations, and real-world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- o Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome- and employability-based.
- o Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible



| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

### **Assessment Methodology:**

|                       | С              | ontinuous Asses | sment (40 mark        | s)             | End<br>Semester           |
|-----------------------|----------------|-----------------|-----------------------|----------------|---------------------------|
|                       | CA1            | CA2             | CA3                   | CA4            | Examination<br>(60 marks) |
| Mode                  | Practical Test | Practical Test  | Practical<br>Document | Practical Test | Practical<br>Examination  |
| Portion               | First Cycle    | Second Cycle    | All Exercises         | All Exercises  | All Exercises             |
| Duration              | 2 Periods      | 2 Periods       | Regularly             | 3 Hours        | 3 Hours                   |
| Exam Marks            | 50             | 50              | 100                   | 100            | 100                       |
| Converted to          | 10             | 10              | 10                    | 20             | 60                        |
| Marks                 | 1              | 0               | 10                    | 20             | 60                        |
| Tentative<br>Schedule | 7th Week       | 14th Week       | 15th Week             | 16th Week      |                           |

Note:

• CA1 and CA2: All the exercises/experiments as per the portions mentioned above should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded will be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Cycle 1 - Exercises 1, 2, 4, 5 and 7.

Cycle 2 - Exercises 3, 6, 8, 9 and 10.



| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

#### SCHEME OF EVALUATION

| PART | DESCRIPTION                               | MARKS |
|------|-------------------------------------------|-------|
| Α    | Aim & Tools required                      | 10    |
| В    | Writing CNC Program / Modelling / Editing | 20    |
| С    | Simulation / Slicing                      | 20    |
|      | TOTAL                                     | 50    |

 CA 3: Practical document should be maintained for every exercise immediately after completion of the practice. The same should be evaluated for 10 Marks. The total marks awarded should be converted to 10 Marks for the internal assessment. The practical document should be submitted for the Practical Test and End Semester Examination with a bonafide certificate

## The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The part program and sketch should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

• **CA 4:** All the exercises should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded should be converted to 20 Marks for the internal assessment.



| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

## SCHEME OF EVALUATION

| Part | Description                                       | Marks |
|------|---------------------------------------------------|-------|
| Α    | Aim & Tools required                              | 10    |
| В    | Writing CNC Program / Modelling                   | 20    |
| С    | Simulation / Slicing                              | 20    |
| D    | Editing in the machine or simulator / Interfacing | 30    |
| E    | Finish / Output                                   | 10    |
| F    | Viva Voce                                         | 10    |
|      | TOTAL MARKS                                       | 100   |

# **Syllabus Contents**

| Introduction                                                                                |    |
|---------------------------------------------------------------------------------------------|----|
| Study of CNC lathe, milling Study of international standard codes:G-Codes and               | 10 |
| M-Codes Format – Dimensioning methods Program writing –Turning simulator –                  |    |
| Milling simulator, IS practice - commands menus Editing the program in the CNC              |    |
| machines Set the machine and execute the program in the CNC machines                        |    |
| Introduction - 3D printing - modelling software- slicing software -parameters like layer    |    |
| thickness- orientation and infill on build time                                             |    |
| Robotics - introduction - types - configurations - joints - degrees of freedom - industrial |    |
| applications - robot analyzer software - features.                                          |    |







| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |





| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |





| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

| 8. Model the given engineering component and prepare the .stl file to print using a  |    |
|--------------------------------------------------------------------------------------|----|
| 3D printer or simulator C Clamp with V Block.                                        |    |
| 9. Position and record the point to point motion of the robot arm or in a simulator. |    |
| (5 Positions)                                                                        |    |
| 10. Position and record the continuous motion of the robot arm or in a simulator.    |    |
| (The profile should have Straight line, Circular and inclined line)                  |    |
| Test and Revision                                                                    |    |
| Total                                                                                | 60 |

## Suggested List of Students Activity:

- 1. Study and practice the CNC programming for various component machining
- 2. Fleld visit near by industries based on CNC machines and make report
- 3. Visit to any three 3D printing industries and make report
- 4. Study the robot configuration and learn about different application of robot
- 5. Prepare a presentation about recent applications of 3D printing and robots.

## Text and Reference Books:

- 1. P. Radhakrishnan, S. Subramanyam, CAD/CAM/CIM,2 nd edition, New Age International, 2008.
- 2. Mikell P. Groover, Mitchell Weiss, Roger N Nagel, Industrial robotics technology, programming, and applications, 2nd edition, McGraw hill Education pvt. ltd., 2012.
- 3. V. K. Jain, Advanced Machining Processes, 1 st edition , Allied Publications, 2010.

#### Web-based/Online Resources:

- https://archive.nptel.ac.in/courses/112/107/112107078/
- http://www.roboanalyzer.com/
- https://archive.nptel.ac.in/courses/112/104/112104265/



| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

#### Equipment / Facilities required conducting the Practical Course.

- 1. Personal computer 30 Nos.
- 2. CNC Simulation software Sufficient to the strength
- 3. CNC Lathe -1 No.
- 4. CNC Mill -1 No.
- 5. Laser / Inkjet Printer 1 No.
- 6. 3D printer 1 No or Modelling and slicing software as per the requirement .
- 7. Robotic arm 1 No. or Robotic simulation software as per the requirement.
- 8. Consumables Sufficient quantity

#### **END SEMESTER EXAMINATION – Practical Exam**

Note:

- All the exercises should be completed. All the exercise should be given for examinations, students can select any one exercise by lot of the question paper supplied by the DOTE shall be used.
- Practical documents should be prepared, the same should be submitted for the End Semester Examinations along with the bonafide certificate.

| Part | Description                                       | Marks |
|------|---------------------------------------------------|-------|
| A    | Aim & Tools required                              | 10    |
| В    | Writing CNC Program / Modelling                   | 20    |
| С    | Simulation / Slicing                              | 20    |
| D    | Editing in the machine or simulator / Interfacing | 30    |
| E    | Finish / Output                                   | 10    |
| F    | Viva Voce                                         | 10    |
|      | TOTAL MARKS                                       | 100   |

#### DETAILED ALLOCATION OF MARKS.



| 1020234440 | SENSORS AND ACTUATORS | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| PRACTICUM  | SENSORS AND ACTUATORS | 1 | 0 | 4 | 3 |

#### Introduction:

Sensors are needed to measure (sense) unknown signals and parameters of an engineering system and its environment. Essentially, sensors are needed to monitor and learn about the system. Sensor is a device that when exposed to a physical phenomenon (temperature, displacement, force, etc.) produces a proportional output signal (electrical, mechanical, magnetic, etc.). Actuators are needed to drive a plant. A diploma holder when employed in automated industrial process controls will be required to know the basics of Sensors and Actuators.

#### **Course Objectives:**

The objective of this course is to enable the student to

- Explain the types and working of various types of sensors.
- Practice with temperature sensor, proximity sensor, LVDT and Light Sensors.
- Describe the functions of Linear and Rotary Electrical actuators.
- Describe the functions of Electrical, Pneumatic and Hydraulic actuators.
- Practice with interfacing of Arduino compatible sensors and actuator with Arduino.

#### **Course Outcomes:**

On successful completion of this course, the student will be able to

- CO1: Describe the working of Resistive, Inductive, Temperature and Light Sensors.
- CO2: Interface and observe the behaviour of Proximity sensors with relay and buzzer.

CO3: Construct the circuit and observe the behaviour of the solid state electronic actuator.

CO4: Describe the working of Electrical, Pneumatic and Hydraulic actuators.

CO5: Demonstrate the applications of Arduino compatible sensors and actuators.

#### **Pre-requisites:**

Applied Physics, Basic Electrical and Mechanical Engineering.



| 1020234440 | SENCORS AND ACTUATORS | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| PRACTICUM  | SENSORS AND ACTUATORS | 1 | 0 | 4 | 3 |

## **CO/PO Mapping**

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | 1   | 2   | 2   |     |     |     |
| C02     | 3   | 1   | 2   | 2   |     |     |     |
| C03     | 3   | 1   | 2   | 2   |     |     |     |
| C04     | 3   | 1   | 2   | 2   |     |     |     |
| C05     | 3   | 1   | 2   | 2   |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

### Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their curiosity to learn.
- Implement task-based learning activities where students work on specific tasks or projects.
- Incorporate technology tools and resources, such as online platforms, interactive multimedia, and virtual communication tools, to enhance engagement and provide additional practice opportunities.
- Incorporate formative and summative assessments to gauge student progress and provide targeted feedback.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- All demonstrations/Hand-on practices may be followed in the real environment as far as possible.



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

### **Assessment Methodology:**

|                       | Co                     | End                     |                        |                    |                                       |
|-----------------------|------------------------|-------------------------|------------------------|--------------------|---------------------------------------|
|                       | CA1                    | CA2                     | CA3                    | CA4                | Semester<br>Examination<br>(60 marks) |
| Mode                  | Practical<br>Test      | Practical<br>Test       | Written Test<br>Theory | Practical<br>Test  | Practical<br>Examination              |
| Portion               | Cycle I<br>Experiments | Cycle II<br>Experiments | All Units              | All<br>Experiments | All<br>Experiments                    |
| Duration              | 2 Periods              | 2 Periods               | 3 Hours                | 3 Hours            | 3 hours                               |
| Exam Marks            | 60                     | 60                      | 100                    | 100                | 100                                   |
| Converted to<br>Marks | 10                     | 10                      | 15                     | 15                 | 60                                    |
| Marks                 | 10                     |                         | 15                     | 15                 | 60                                    |
| Tentative<br>Schedule | 7th Week               | 14th Week               | 15th Week              | 16th Week          |                                       |

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.



## The details of the documents to be prepared as per the instruction below.

Each experiment should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The student should draw the Circuit Diagram and take readings, do calculations and prepare the Graph/Result manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| PART | DESCRIPTION                               | MARKS |
|------|-------------------------------------------|-------|
| Α    | Aim & Apparatus Required                  | 5     |
| В    | Circuit Diagram                           | 20    |
| С    | Connections and Execution                 | 25    |
|      | 50                                        |       |
| D    | Practical Documents (As per the portions) | 10    |
|      | 60                                        |       |

## SCHEME OF EVALUATION

Cycle I: 1, 2, 3, 4 and 5.

Cycle II: 6, 7, 8, 9 and 10.

• **CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



## **Question pattern – Written Test Theory**

| Description |                                      | Marks        |          |  |
|-------------|--------------------------------------|--------------|----------|--|
| Part – A    | 30 MCQ Questions.                    | 30 X 1 Mark  | 30 Marks |  |
| Part – B    | 7 Questions to be answered out of 10 | 7 X 10 Marks | 70 Marks |  |
|             | Questions.                           |              |          |  |
|             | 100 Marks                            |              |          |  |

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

## SCHEME OF EVALUATION

## Model Practical Examination and End Semester Examination - Practical Exam

| PART | DESCRIPTION                    | MARKS |
|------|--------------------------------|-------|
| Α    | Aim & Apparatus Required       | 5     |
| В    | Circuit Diagram                | 20    |
| С    | Connections and Execution      | 25    |
| D    | Output / Result                | 10    |
| Е    | Written Test (Theory Portions) | 30    |
| F    | Viva Voce                      | 10    |
|      | TOTAL                          | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.


| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

# **Syllabus Contents**

| Theory P                                                                          | Portion                                                                   |        |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------|
| UNIT I: S                                                                         | ENSORS                                                                    | Period |
| Resistan                                                                          | ce, Inductance and Capacitive Sensors: Definition - Classification of     | 8      |
| Sensors/                                                                          | /Transducers - Elements of measurement system – Primary Sensing           |        |
| Elements                                                                          | s (Bellows, Bourdon Tube) - Potentiometer - Linear potentiometer – Rotary |        |
| potentio                                                                          | meter - Load Cell – Strain Gauge Load Cell - Linear Variable Differential |        |
| Transfor                                                                          | mer (LVDT) – Rotary - Variable Differential Transformer (RVDT) – DC       |        |
| Tachogenerator - AC Tachogenerator - Principles of Capacitive Sensors - Hall      |                                                                           |        |
| effect se                                                                         | nsor.                                                                     |        |
| Tempera                                                                           | ature Sensors: Thermocouple – Resistance Temperature Detector             |        |
| -Thermi                                                                           | stor - Infrared (IR) thermometer.                                         |        |
| Proximit                                                                          | y Sensors: Inductive Proximity Sensor - Capacitive Proximity Sensor -     |        |
| Photoelectric Proximity Sensor - Ultrasonic Proximity Sensor - Basic Reed Switch. |                                                                           |        |
| Light Sensor: Photodiode – Phototransistor – Photoconductive Cell - Photovoltaic  |                                                                           |        |
| Cells - B                                                                         | ar Code Reader - Shaft Encoders - Encoder Types (Incremental Encoder,     |        |
| Absolute                                                                          | e Encoder) - Optical Shaft Encoder - Photoelectric Tachometer.            |        |
| Arduino                                                                           | Compatible Sensor : Voltage Sensor - Current Sensor - LM35 Sensor -       |        |
| Ultrason                                                                          | ic Sensor - Force Sensor – Moisture Sensor – Gas Sensor.                  |        |
| Practical                                                                         | Exercises:                                                                |        |
| Ex.No                                                                             | Name of the Experiment                                                    |        |
| 1.                                                                                | TEMPERATURE MEASUREMENT                                                   | 4      |
|                                                                                   | Activities to Perform:                                                    |        |
|                                                                                   | i) Construct a circuit to measure Temperature of Liquid using             |        |
|                                                                                   | Thermistor or Thermocouple or RTD.                                        |        |
|                                                                                   | ii) Also find the graphical relationship between input and output.        |        |



1020234440

PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

| 2. | BEHAVIOUR OF PROXIMITY SENSORS                                       | 4 |
|----|----------------------------------------------------------------------|---|
|    | Activities to Perform:                                               |   |
|    | i) Observe the behaviour of Inductive proximity sensor and           |   |
|    | Capacitive Proximity sensor for different material samples.          |   |
|    | ii) Interface relay and buzzer with sensors to test the output.      |   |
| 3. | LVDT                                                                 | 4 |
|    | Activities to Perform:                                               |   |
|    | i) Construct a circuit for Measurement of Linear Displacement        |   |
|    | using LVDT.                                                          |   |
|    | ii) Find the graphical relationship between input and output.        |   |
| 4. | PERFORMANCE OF LIGHT SENSOR                                          | 4 |
|    | Activities to Perform:                                               |   |
|    | i) Construct a circuit to obtain the VI characteristics and Response |   |
|    | Characteristics of Photoconductive Cell (LDR).                       |   |
|    | ii) Construct a circuit to measure the speed of the motor using      |   |
|    | Optical Sensor.                                                      |   |
| 5. | PERFORMANCE OF ULTRASONIC AND MOISTURE SENSORS                       | 4 |
|    | Activities to Perform:                                               |   |
|    | i) Interface Ultrasonic sensor with Arduino and measure the          |   |
|    | distance of the object.                                              |   |
|    | ii) Interface Moisture sensor with Arduino and measure the moisture  |   |
|    | content in the soil.                                                 |   |
|    |                                                                      |   |



| UNIT II: /                                                                       | ACTUATORS                                                                  |        |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------|
| Electrica                                                                        | Actuators: General aspects - Switching Devices – Mechanical Switches       | 7      |
| (Push bu                                                                         | utton – SPST –SPDT – Limit Switch – Solenoid – Relays) – Solid State       |        |
| switches                                                                         | (Diode, Transistor and Thyristor) – DC Motors – AC Motors – Stepper        |        |
| Motors -                                                                         | - Servo Motors.                                                            |        |
| Pneumat                                                                          | tic Actuators: Introduction - Components of a Pneumatic Systems            |        |
| -Linear                                                                          | actuators – Construction and working of Single acting and Double acting    |        |
| cylinders                                                                        | - Rotary Actuators – Air Motors – Types of Air Motors - Piston type Motor, |        |
| Vane Mo                                                                          | tor, Turbine Motor - Applications of Air Motors.                           |        |
| Hydraulic Actuators: Hydraulic Power Supply - Components of Hydraulic system -   |                                                                            |        |
| Linear actuators - Construction and working of Single acting and Double acting   |                                                                            |        |
| cylinders                                                                        | - Applications of Hydraulic Cylinders - Some example mechanism driven      |        |
| by an Hydraulic cylinders - Rotary Actuators - Hydraulic Motors - Advantages and |                                                                            |        |
| Applicati                                                                        | ons of Hydraulic Motors.                                                   |        |
| Practical                                                                        | Exercises:                                                                 |        |
| Ex.No                                                                            | Name of the Experiment                                                     | Period |
| 6.                                                                               | OBSERVE THE BEHAVIOUR OF TRANSISTOR AS A SWITCH                            | 4      |
|                                                                                  | Activities to Perform:                                                     |        |

|    | Activities to Perform:                                            |   |
|----|-------------------------------------------------------------------|---|
|    | i) Construct a circuit to get ON/OFF control on DC Motor using    |   |
|    | Push Button, SPST, SPDT and Limit Switch.                         |   |
|    | ii) Construct a circuit to get ON/OFF control on DC Motor using   |   |
|    | Transistor and Relay.                                             |   |
| 7. | FORWARD AND REVERSE CONTROL OF AC MOTOR                           | 4 |
|    | Activities to Perform:                                            |   |
|    | i) Connect Forward Reverse Control switch to change the direction |   |
|    | of rotation of three phase induction motor.                       |   |
|    | ii) Demonstrate the Forward and Reverse operation of Motor.       |   |



1020234440

PRACTICUM

|     | iii) Measure the No-Load current in each phase using Tongue tester  |    |
|-----|---------------------------------------------------------------------|----|
|     | (Clamp Meter).                                                      |    |
| 8.  | PNEUMATIC CIRCUIT FOR DOUBLE ACTING CYLINDER                        | 4  |
|     | Activities to Perform:                                              |    |
|     | i) Construct a Pneumatic Circuit to control double acting pneumatic |    |
|     | cylinder using 5/2 Solenoid Valve.                                  |    |
|     | ii) Discuss the behaviour of cylinder as linear actuator.           |    |
| 9.  | OBSERVE THE BEHAVIOUR OF HYDRAULIC MOTOR                            | 4  |
|     | Activities to Perform:                                              |    |
|     | i) Construct a Hydraulic Circuit to control Hydraulic Motor.        |    |
|     | ii) Observe the behaviour of Hydraulic Motor.                       |    |
| 10. | SERVO MOTOR CONTROL WITH AN ARDUINO                                 | 4  |
|     | Activities to Perform:                                              |    |
|     | i) Construct an Arduino based circuit to sweeps the shaft of servo  |    |
|     | motor back and forth across 180 degree.                             |    |
|     | ii) Interface potentiometer with Arduino and based on its position  |    |
|     | get the control of servo motor shaft.                               |    |
|     | Revision + Test + Practice                                          | 20 |
|     | Total                                                               | 75 |

### Suggested List of Students Activity:

- 1. Activity 1 : Each student writes and submits the assignment on the topic Basics of Electricity, Ohm's Law and Electromagnetism.
- Activity 2 : Four students can be grouped as a batch and practice an additional experiment to interface any one of the Arduino compatible sensors (LM35 Temperature sensor, Force Sensor, Gas Sensor, Voltage Sensor, Humidity Sensor, Rain Sensor, Acceleration sensor, magnetic sensor, Infrared sensor etc.,) with Arduino and observe the behaviour of sensors.



#### Text book for Reference:

- 1. D. Patranabis, Sensors and Transducers, Multicolour Edition, Second Edition, PHI Learning Private Limited., 2013.
- 2. Er. R.K. Rajput, A Textbook of Mechatronics, Fourth Edition, S. Chand & amp; Co., 2016.
- 3. Jacob Fraden, Handbook of Modern Sensors: Physics, Designs and Application, Fourth edition, Springer, 2010.
- 4. Massood Tabib and Azar, Microactuators Electrical, Magnetic, thermal, optical, mechanical, chemical and smart structures, First edition, Kluwer academic publishers, Springer, 1997.

#### Web-based/Online Resources:

- https://archive.nptel.ac.in/courses/108/108/108108147/
- https://www.youtube.com/watch?v=H90EAn3Uc2w
- https://www.youtube.com/watch?v=Ab9U7NQB1kA



| 1020234440 |                       | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| PRACTICUM  | SENSORS AND ACTUATORS | 1 | 0 | 4 | 3 |

# Equipment / Facilities required to conduct the Practical Course.

| S.No | Name of the Equipment's                                             | Quantity    |
|------|---------------------------------------------------------------------|-------------|
|      |                                                                     | Required    |
| 1    | Temperature Measurement using Thermocouple / Thermistor / RTD       | 1 No        |
|      | Kit                                                                 |             |
| 2    | Inductive and Capacitive Proximity Sensors, Relay, Buzzer, Suitable | Fach 1 No   |
| 2.   | Power Supply Unit                                                   |             |
| 3.   | LVDT Trainer Kit                                                    | 1 No        |
| 4    | LDR, MC Ammeter and Voltmeter, 0-30V DC Power Supply Unit, DC       | Fach 1 No   |
|      | Motor with Optical Sensor set up                                    |             |
| 5.   | Arduino Shield, Arduino compatible Ultrasonic Sensor and Moisture   | Each 1 No   |
|      | sensor                                                              |             |
| 6.   | Push Button, SPST, SPDT, Limit Switch, Low Voltage DC Motor,        | Each 1 No   |
|      | Transistor and Relay                                                |             |
| 7.   | 3 Phase Induction Motor, Forward Reverse Control switch and         | Each 1 No   |
|      | Clamp Meter                                                         |             |
| 8.   | Double acting Pneumatic cylinder, Directional Control Valve,        | Each 1 No   |
|      | Compressor                                                          |             |
| 9.   | Hydraulic Motor, Control Valve, Hydraulic Power Bank                | Each 1 No   |
| 10.  | Arduino shield, Arduino compatible Servo Motor and Potentiometer    | Each 1 No   |
| 11.  | Other Consumables                                                   | As Required |



### END SEMESTER EXAMINATIONS – PRACTICAL EXAM

#### Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The record of work done by the student should be submitted with a Bonafide Certificate.

#### SCHEME OF EVALUATION

| PART | DESCRIPTION              | MARKS |
|------|--------------------------|-------|
| Α    | Aim & Apparatus Required | 5     |
| В    | Circuit Diagram          | 20    |
| С    | Connections / Execution  | 25    |
| D    | Output / Result          | 10    |
| E    | Written Test             | 30    |
| F    | Viva Voce                | 10    |
|      | TOTAL                    | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



| PRACTICUM 1 0 4 3 | 1020234540 | HEAT POWER ENGINEERING | L | Т | Ρ | С |
|-------------------|------------|------------------------|---|---|---|---|
|                   | PRACTICUM  |                        | 1 | 0 | 4 | 3 |

#### Introduction

The purpose of heat power engineering is to give conceptual and principles involving thermal science, especially focusing on Internal combustion engine, Refrigerator, and compressors. Through experiments and simulations conducted in the lab, students can validate theoretical concepts, optimize system performance, testing of various oil properties for using as a fuel and lubricant in thermal systems and develop innovative solutions for real-world applications. This practical knowledge enhances their problem-solving skills and prepares them for the challenges they will face in their careers.

#### **Course Objectives**

The objective of this course is to enable the student,

- 1. To understand the fundamental concepts involved in thermal systems.
- 2. To analyse the various performance parameters of internal combustion (IC) engines.
- 3. To analyse the performance of refrigeration cycle/ components.
- 4. To analyse the performance of the compressor and its volumetric efficiency.
- 5. To study the properties, complete combustion of fuels and its products.

#### **Course Outcomes**

On successful completion of this course, the student will be able to

- CO1: Interpret the performance indicators of air standard cycles.
- CO2: Analyse the performance characteristics of IC engines for various fuels
- CO3: Categorise the principles of refrigeration and air conditioning with applications
- CO4: Categorise the principles of air compressor applications
- CO5: Evaluate the combustion products of fuels by using the exhaust gas analyzer.

#### **Pre-requisites**

Basic knowledge of Science, Maths



| 1020234540 | HEAT POWER ENGINEERING | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| PRACTICUM  |                        | 1 | 0 | 4 | 3 |

# **CO/PO Mapping**

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | 2   | 1   | 2   |     |     |     |
| C02     | 3   | 2   | 1   | 2   |     |     |     |
| C03     | 3   | 2   | 1   | 2   |     |     |     |
| C04     | 3   | 2   | 1   | 2   |     |     |     |
| C05     | 3   | 2   | 1   | 2   |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy:

- It's recommended that teachers take action to grab students' interest and increase their confidence in their ability to learn.
- Teachers should use examples from everyday life, realistic scenarios, and real-world engineering and technological applications to help students understand and appreciate the many concepts and principles in each subject.
- The demonstration might spark interest in the subject and encourage a scientific perspective. Every topic should have planned student activities.
- To make sure that learning is outcome-and employability based, a theory demonstrate - practice - activity approach may be used throughout the course.



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

#### **Assessment Methodology:**

|                       | Co                   | ontinuous Asses       | sment (40 mark         | (s)               | End                                   |
|-----------------------|----------------------|-----------------------|------------------------|-------------------|---------------------------------------|
|                       | CA1                  | CA2                   | CA3                    | CA4               | Semester<br>Examination<br>(60 marks) |
| Mode                  | Practical<br>Test    | Practical<br>Test     | Written Test<br>Theory | Practical<br>Test | Practical<br>Examination              |
| Portion               | Cycle I<br>Exercises | Cycle II<br>Exercises | All Units              | All Exercises     | All Exercises                         |
| Duration              | 2 Periods            | 2 Periods             | 3 Hours                | 3 Hours           | 3 hours                               |
| Exam Marks            | 60                   | 60                    | 100                    | 100               | 100                                   |
| Converted to<br>Marks | 10                   | 10                    | 15                     | 15                | 60                                    |
| Marks                 | 1                    | 0                     | 15                     | 15                | 60                                    |
| Tentative<br>Schedule | 7th Week             | 14th Week             | 15th Week              | 16th Week         |                                       |

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.



| 1020234540 | HEAT POWER ENGINEERING | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| PRACTICUM  |                        | 1 | 0 | 4 | 3 |

### The details of the documents to be prepared as per the instruction below.

Each experiment should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The observations, readings, calculations and sketches should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| PART | DESCRIPTION                               | MARKS |
|------|-------------------------------------------|-------|
| Α    | Aim and procedure                         | 10    |
| В    | Tabular Column / Formulae                 | 10    |
| С    | Observation / Calculation / Diagram       | 30    |
|      | TOTAL                                     | 50    |
| D    | Practical Documents (As per the portions) | 10    |
|      |                                           | 60    |

# SCHEME OF EVALUATION

Cycle 1: Exercise 1, 2, 3, 4 and 5. Cycle 2: Exercise 6, 7, 8, 9 and 10.

• **CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



| 1020234540 | HEAT POWER ENGINEERING | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| PRACTICUM  |                        | 1 | 0 | 4 | 3 |

### **Question pattern – Written Test Theory**

|          | Description                               | Mai          | rks       |
|----------|-------------------------------------------|--------------|-----------|
| Part – A | 30 MCQ from the complete theory portions. | 30 X 1 Mark  | 30 Marks  |
| Part – B | Seven Questions to be answered out of 10  | 7 X 10 Marks | 70 Marks  |
|          | Questions.                                |              |           |
|          | TOTAL                                     |              | 100 Marks |

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

### SCHEME OF EVALUATION

### Model Practical Examination and End Semester Examination - Practical Exam

| PART | DESCRIPTION                         | MARKS |
|------|-------------------------------------|-------|
| А    | Aim and procedure                   | 10    |
| В    | Tabular Column / Formulae           | 10    |
| С    | Observation / Calculation / Diagram | 30    |
| D    | Result / Graph                      | 10    |
| E    | Written Test (Theory Portions)      | 30    |
| F    | Viva Voce                           | 10    |
|      | TOTAL                               | 100   |

**Note:** For the written test 30 MCQ shall be asked from the theory portions.



# Syllabus contents

| THEORY                                                                           |                                                                              |        |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------|--|
| Unit I                                                                           | AIR CYCLES AND IC ENGINES                                                    |        |  |
| Basic co                                                                         | ncept of thermodynamics, definition and units of pressure, temperature,      | 9      |  |
| volume, density, specific heat, energy, work, force, power, heat, enthalpy, and  |                                                                              |        |  |
| entropy.                                                                         | Laws of perfect gases and its Equation. Thermodynamic processes such         |        |  |
| as cons                                                                          | stant volume, constant pressure, constant temperature, adiabatic,            |        |  |
| polytropi                                                                        | c. (simple problems)                                                         |        |  |
| Air cycle                                                                        | s - air standard efficiency - reversible and irreversible processes - Carnot |        |  |
| cycle - O                                                                        | tto cycle - Diesel cycle. Illustration of above cycles on pressure, volume,  |        |  |
| temperat                                                                         | cure, and entropy scale- working and calculation of efficiency. (simple      |        |  |
| problems                                                                         | 5)                                                                           |        |  |
| Internal combustion engines – classification - comparison of four stroke and two |                                                                              |        |  |
| stroke engines.                                                                  |                                                                              |        |  |
| Testing of IC engines- indicated power - brake power - friction power -          |                                                                              |        |  |
| efficienci                                                                       | es of I.C. engines – indicated thermal, brake thermal, mechanical, and       |        |  |
| relative e                                                                       | fficiencies – Specific fuel consumption.                                     |        |  |
| Practical                                                                        | Exercises:                                                                   |        |  |
| Ex.No                                                                            | Name of the Experiment                                                       | Period |  |
| 1                                                                                | Determine the flash and fire point of the lubricating oil by using Open      | 5      |  |
|                                                                                  | cup apparatus and Closed cup apparatus and compare the value for the         |        |  |
|                                                                                  | given sample.                                                                |        |  |
| 2                                                                                | Draw the valve timing diagram of single cylinder four stroke petrol          | 5      |  |
|                                                                                  | engines.                                                                     |        |  |
| 3                                                                                | Draw the valve timing diagram of single cylinder four stroke diesel          | 5      |  |
|                                                                                  | engines.                                                                     |        |  |
| 4                                                                                | Draw the port timing diagram of a single cylinder two stroke Petrol          | 5      |  |
|                                                                                  | Engine.                                                                      |        |  |



| 1020234540 | HEAT POWER ENGINEERING | L | Т | Р |
|------------|------------------------|---|---|---|
| PRACTICUM  |                        | 1 | 0 | 4 |

| <ul> <li>Load test (Performance test) on Four Stroke Diesel Engine or Four</li> <li>Stroke Petrol Engine.</li> <li>Morse test on multi-cylinder petrol engine.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                      |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| 6 Morse test on multi-cylinder petrol engine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |  |  |
| 6 Morse test on multi-cylinder petrol engine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                      |  |  |
| 7 Heat balance test on Four Stroke Diesel or Petrol Engine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                      |  |  |
| Unit II AIR COMPRESSOR , REFRIGERATION AND FUELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |  |  |
| Air Compressor and its functions, Single stage & Multi stage reciprocating air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                      |  |  |
| compressor - Refrigeration: Introduction to refrigeration, refrigerant, refrigeration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |  |  |
| effects. COP, TON of refrigeration. Vapor compression refrigeration (VCR) system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |  |  |
| Classifications of fuels- requirements of a good fuel - stoichiometric air required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |  |  |
| for complete combustion of fuels – products of combustion – analysis of exhaust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |  |  |
| for complete combustion of fuels – products of combustion – analysis of exhaust<br>gases - calorific value of fuels – higher and lower calorific values.                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |  |  |
| for complete combustion of fuels – products of combustion – analysis of exhaust<br>gases - calorific value of fuels – higher and lower calorific values.<br>Practical Exercises:                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |  |  |
| for complete combustion of fuels – products of combustion – analysis of exhausting gases - calorific value of fuels – higher and lower calorific values.           Practical Exercises:           Ex.No         Name of the Experiment                                                                                                                                                                                                                                                                                                                                                  | Period                                                 |  |  |
| Classifications of rules – requirements of a good rule – stoichiometric an required for complete combustion of fuels – products of combustion – analysis of exhaust gases - calorific value of fuels – higher and lower calorific values.         Practical Exercises:         Ex.No       Name of the Experiment         8       Volumetric efficiency of Air Compressor.                                                                                                                                                                                                              | Period<br>5                                            |  |  |
| Classifications of rules – requirements of a good rulei – stoichiometric an required         for complete combustion of fuels – products of combustion – analysis of exhaus         gases - calorific value of fuels – higher and lower calorific values.         Practical Exercises:         Ex.No       Name of the Experiment         8       Volumetric efficiency of Air Compressor.         9       Determination of COP of Refrigeration System.                                                                                                                                | Period           5           5                         |  |  |
| Classifications of rules – requirements of a good rule – storchometric an required         for complete combustion of fuels – products of combustion – analysis of exhaus         gases - calorific value of fuels – higher and lower calorific values.         Practical Exercises:         Ex.No       Name of the Experiment         8       Volumetric efficiency of Air Compressor.         9       Determination of COP of Refrigeration System.         10       Find the Percentage of CO, CO <sub>2</sub> , O <sub>2</sub> , and amount of HC, NOx using                       | Period<br>5<br>5<br>5<br>5                             |  |  |
| Classifications of rules – requirements of a good rule – storchometric an required         for complete combustion of fuels – products of combustion – analysis of exhaus         gases - calorific value of fuels – higher and lower calorific values.         Practical Exercises:         Ex.No       Name of the Experiment         8       Volumetric efficiency of Air Compressor.         9       Determination of COP of Refrigeration System.         10       Find the Percentage of CO, CO <sub>2</sub> , O <sub>2</sub> , and amount of HC, NOx using Exhaust gas analyser. | Period           5           5           5           5 |  |  |
| Classifications of fuels – fequilements of a good fuel – stolchometric all required for complete combustion of fuels – products of combustion – analysis of exhaust gases - calorific value of fuels – higher and lower calorific values.         Practical Exercises:         Ex.No       Name of the Experiment         8       Volumetric efficiency of Air Compressor.         9       Determination of COP of Refrigeration System.         10       Find the Percentage of CO, CO <sub>2</sub> , O <sub>2</sub> , and amount of HC, NOx using Exhaust gas analyser.               | Period<br>5<br>5<br>5<br>5<br>10                       |  |  |

# List of Students Activity to be performed:

- Dismantling and assembling a reciprocating and rotary compressor .
- Study the types of Refrigerants and their properties.
- Study the working principle of two stroke and four stroke engines.
- Study the Valve Timing / Port Timing of multi cylinder engine.



# DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 2023 REGULATION

С

3

### **Textbook for reference**

- 1. R. K. Rajput, Thermal Engineering, 11th Edition, Laxmi publications Pvt Ltd , New Delhi, 2020.
- 2. R.S. Khurmi, J. K. Gupta, A Textbook of Thermal Engineering, S. Chand Publishing, 2019.
- 3. R. K. Rajput , A Text Book of Automobile Engineering, Laxmi publications Pvt Ltd, New Delhi, 2012.
- 4. P. K. Nag, Basic And Applied Thermodynamics 2/E, McGraw-Hill Education (India) Pvt Limited, 2010.

#### Website links for reference

- NPTEL (Website): https://archive.nptel.ac.in/courses/112/103/112103316/
- NPTEL (Website): https://archive.nptel.ac.in/courses/112/103/112103262/



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

# List of Equipments

| S.No. | Name of Equipments                                                     | Quantity |
|-------|------------------------------------------------------------------------|----------|
| 1.    | Open cup apparatus                                                     | 1 No.    |
| 2.    | Closed cup apparatus                                                   | 1 No.    |
| 3.    | Four stroke petrol engine cut section model for valve timing diagram.  | 1 No.    |
| 4.    | Four stroke diesel engine cut section model for valve timing diagram.  | 1 No.    |
| 5.    | Two stroke petrol cut section model for port timing diagram.           | 1 No.    |
| 6.    | Four Stroke Petrol Engine or Diesel Engine Test rig.                   | 1 No.    |
| 7.    | Multi- Cylinder Petrol or Diesel Engine Test rig.                      | 1 No.    |
| 8.    | Air Compressor Test rig.                                               | 1 No.    |
| 9.    | Refrigeration Test rig.                                                | 1 No.    |
| 10.   | Exhaust Gas Analyzer.                                                  | 1 No.    |
| 11.   | Reciprocating and Rotary Air compressor for dismantling and assembling | 1 No.    |



| 1020234540 | HEAT POWER ENGINEERING | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| PRACTICUM  |                        | 1 | 0 | 4 | 3 |

## END SEMESTER EXAMINATION – PRACTICAL EXAM

Note: All the exercises should be given in the question paper and students are allowed to select by a lot or the question paper allotted from the DOTE shall be used.

Practical document should be submitted for the examination with a bonafide certificate.

| PART | DESCRIPTION                         | MARKS |
|------|-------------------------------------|-------|
| А    | Aim and procedure                   | 10    |
| В    | Tabular Column / Formulae           | 10    |
| С    | Observation / Calculation / Diagram | 30    |
| D    | Result / Graph                      | 10    |
| E    | Written Test (Theory Portions)      | 30    |
| F    | Viva Voce                           | 10    |
|      | TOTAL                               | 100   |

#### SCHEME OF EVALUATION

**Note:** For the written test 30 MCQ shall be asked from the theory portions.



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

#### Introduction

The progress in metrology and measurements is highly necessary and has led to improvements in product quality, enhanced scientific research capabilities, and increased efficiency in diverse industries including manufacturing, automobile, aerospace, and quality control. It encompasses various disciplines and techniques used to ensure the accuracy, precision, and reliability of measurements. Therefore, the study of metrology and measurements is essential for maintaining uniformity and excellence across various fields, including manufacturing and scientific research.

#### **Course Objectives**

The objective of this course is to prepare the student,

- To impart knowledge about different measuring instruments.
- To provide fundamental principles of metrology and understand the significance of accurate measurements.
- To acquire knowledge regarding the measurement of linear and angular dimensions of components and assemblies.
- To impart knowledge on advanced measurement techniques for quality control in manufacturing industries

#### **Course Outcomes**

On successful completion of this course, the student will be able to,

- CO1: Classify the measuring instruments based on their applications.
- CO2: Select appropriate instrument for linear dimensions
- CO3: Select appropriate instrument for angular dimensions
- CO4: Explain various instruments used in measuring screw threads and gears
- CO5: Discuss about the applications of CMM and LASER technology in metrology

#### **Pre-requisites**

Knowledge of basic measuring instruments.



| 1020234640 | METROLOGY AND MEASUREMENTS | L | Т | Ρ | С |
|------------|----------------------------|---|---|---|---|
| PRACTICUM  |                            | 1 | 0 | 4 | 3 |

# CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 2   |     |     | 2   |     |     |     |
| C02     | 2   |     |     | 2   |     |     |     |
| C03     | 2   |     |     | 2   |     |     |     |
| C04     | 2   |     |     | 2   |     |     |     |
| C05     | 2   |     |     | 2   |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy

- It is advised that teachers take steps to pique pupils' attention and boost their curiosity to learn.
- Implement task-based learning activities where students work on specific tasks or projects.
- Incorporate technology tools and resources, such as online platforms, interactive multimedia, and virtual communication tools, to enhance engagement and provide additional practice opportunities.
- Incorporate formative and summative assessments to gauge student progress and provide targeted feedback.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- All demonstrations/Hand-on practices may be followed in the real environment as far as possible.



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

#### **Assessment Methodology:**

|                       | Co                   | ontinuous Asses       | sment (40 mark         | (s)               | End                                   |
|-----------------------|----------------------|-----------------------|------------------------|-------------------|---------------------------------------|
|                       | CA1                  | CA2                   | CA3                    | CA4               | Semester<br>Examination<br>(60 marks) |
| Mode                  | Practical<br>Test    | Practical<br>Test     | Written Test<br>Theory | Practical<br>Test | Practical<br>Examination              |
| Portion               | Cycle I<br>Exercises | Cycle II<br>Exercises | All Units              | All Exercises     | All Exercises                         |
| Duration              | 2 Periods            | 2 Periods             | 3 Hours                | 3 Hours           | 3 hours                               |
| Exam Marks            | 60                   | 60                    | 100                    | 100               | 100                                   |
| Converted to<br>Marks | 10                   | 10                    | 15                     | 15                | 60                                    |
| Marks                 | 1                    | 0                     | 15                     | 15                | 60                                    |
| Tentative<br>Schedule | 7th Week             | 14th Week             | 15th Week              | 16th Week         |                                       |

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.



| 1020234640 | METROLOGY AND MEASUREMENTS | L | Т | Ρ | С |
|------------|----------------------------|---|---|---|---|
| PRACTICUM  |                            | 1 | 0 | 4 | 3 |

# The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The observations, readings, calculations and sketches should be written by the student manually in the document.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| PART | DESCRIPTION                               | MARKS |
|------|-------------------------------------------|-------|
| Α    | Procedure / Preparation                   | 10    |
| В    | Observation / Dimensions                  | 20    |
| С    | Accuracy                                  | 20    |
|      | TOTAL                                     | 50    |
| D    | Practical Documents (As per the portions) | 10    |
|      |                                           | 60    |

### SCHEME OF EVALUATION

Cycle - I Exercise 1, 2, 3, 4, 5 and 6.

Cycle - II Exercise 7, 8, 9 and 10.

• **CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



| 1020234640 | METROLOGY AND MEASUREMENTS | L | Т | Ρ | С |
|------------|----------------------------|---|---|---|---|
| PRACTICUM  |                            | 1 | 0 | 4 | 3 |

### **Question pattern – Written Test Theory**

| Description |                                           | Ma           | rks      |
|-------------|-------------------------------------------|--------------|----------|
| Part – A    | 30 MCQ from the complete theory portions. | 30 X 1 Mark  | 30 Marks |
| Part – B    | Seven Questions to be answered out of 10  | 7 X 10 Marks | 70 Marks |
|             | Questions.                                |              |          |
|             | 100 Marks                                 |              |          |

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

| PART | DESCRIPTION              | MARKS |
|------|--------------------------|-------|
| A    | Procedure / Preparation  | 10    |
| В    | Observation / Dimensions | 20    |
| С    | Accuracy                 | 20    |
| D    | Result                   | 10    |
| E    | Viva voce                | 10    |
| F    | Written test             | 30    |
|      |                          | 100   |

# SCHEME OF EVALUATION

**Note:** For the written test 30 MCQ shall be asked from the theory portions.



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

# Syllabus contents

| THEORY                                                                              |         |  |
|-------------------------------------------------------------------------------------|---------|--|
| UNIT I: LINEAR MEASUREMENTS AND COMPARATORS                                         | Periods |  |
| Basics of Metrology                                                                 | 8       |  |
| Scope of Metrology, basic units, important terminology, Measurement – Need,         |         |  |
| Process, Role in quality control; Factors affecting measurement - SWIPE;            |         |  |
| international standardization, the bureau of Indian standards - important elements  |         |  |
| of measurements - methods of measurements.                                          |         |  |
| Precision - accuracy - definition - factors affecting the accuracy of the measuring |         |  |
| system - general rules for accurate measurements - precautions for use of           |         |  |
| instruments so as to avoid in accuracy in measurements - reliability - definition,  |         |  |
| Measurement uncertainty, Measurement system analysis, Compare systematic            |         |  |
| error and random error, Selection of measuring instruments - Calibration of         |         |  |
| measuring instruments.                                                              |         |  |
| Linear Measurements                                                                 |         |  |
| Linear Measuring Instruments – Vernier caliper, Micrometer, Vernier height gauge,   |         |  |
| Depth Micrometer, bore gauge, Telescoping gauge; Gauge blocks – Use and             |         |  |
| precautions, possible sources of errors in micrometers – slip gauges -              |         |  |
| requirements – Indian standard – care and use.                                      |         |  |
| Comparator                                                                          |         |  |
| Comparators – Working and advantages - Types - Mechanical and Pneumatic             |         |  |
| Comparators.                                                                        |         |  |
| Practical Exercises:                                                                |         |  |
| Ex. No Name of the Experiment                                                       | Hours   |  |
| 1 VERNIER CALIPER                                                                   |         |  |
| i) Measure the dimensions of ground MS flat/Cylindrical bush using                  | 5       |  |
| Vernier Caliper.                                                                    |         |  |
| ii) Compare the results with Digital Vernier Caliper.                               |         |  |



# 1020234640

PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

| 2          | OUTSIDE MICROMETER                                                         | 5 |
|------------|----------------------------------------------------------------------------|---|
|            | i) Measure the diameter of a wire using micrometer                         |   |
|            | ii) Compare the results with a digital Outside micrometer.                 |   |
| 3          | INSIDE MICROMETER                                                          | 5 |
|            | i) Measure the inside diameter of the bore of a bush cylindrical           |   |
|            | component using Inside micrometer                                          |   |
|            | ii) Compare the results with digital inside micrometer.                    |   |
| 4          | SLIP GAUGES                                                                | 5 |
|            | Measure the thickness of ground MS plates using slip gauges.               |   |
| 5          | VERNIER HEIGHT GAUGE                                                       |   |
|            | Measure the height of gauge blocks or parallel bars using vernier height   | 5 |
|            | gauge.                                                                     |   |
| 6          | MECHANICAL COMPARATOR                                                      | 5 |
|            | Find out the measurement of a given component and Compare with a           |   |
|            | standard component using a mechanical comparator and slip gauge.           |   |
| THEORY     |                                                                            |   |
| UNIT II: A | NGULAR MEASUREMENTS, CMM, SURFACE & ADVANCED METROLOGY                     |   |
| Angular    | Measurements: Angular measuring instruments - Bevel protractor, Angle      | 7 |
| gauges,    | Precision level, Sine bar, Autocollimator. Opto-mechanical measurements    |   |
| using a    | measuring microscope and Profile projector. Measurement of Screw threads   |   |
| – Singl    | e element measurements – Pitch Diameter, Lead, Pitch. Measurement of       |   |
| Gears -    | purpose – Analytical measurement – Runout, Pitch variation, Tooth profile, |   |
| Tooth th   | nickness, Lead.                                                            |   |
| Coordin    | ating measuring Machine: Basic concept of CMM – Types of CMM –             |   |
| Constru    | ctional features – Probes – Accessories – Software – Applications.         |   |
| Advanc     | ed Metrology: Basic concepts of lasers - types of lasers - laser and LED   |   |
| based d    | istance measuring instruments.                                             |   |



1020234640

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

| Practical Exercises: |                                                                     |    |
|----------------------|---------------------------------------------------------------------|----|
| Ex. No.              | Name of the Experiment                                              |    |
| 7                    | UNIVERSAL BEVEL PROTRACTOR                                          | 5  |
|                      | Measure the angle of a V-block/Taper Shank of Drill/ Dovetail using |    |
|                      | universal bevel protractor.                                         |    |
| 8                    | SINE BAR                                                            | 5  |
|                      | Measure the angle of the machined surface using sine bar with slip  |    |
|                      | gauges.                                                             |    |
| 9                    | SCREW THREAD MICROMETER                                             | 5  |
|                      | Measure the geometrical dimensions of V-Thread using screw thread   |    |
|                      | micrometer.                                                         |    |
| 10                   | GEAR TOOTH VERNIER CALIPER                                          | 5  |
|                      | Measure the geometrical dimensions of spur gear using gear tooth    |    |
|                      | vernier caliper.                                                    |    |
|                      | Activity + Revision + Assessment Test                               | 10 |
|                      | Total                                                               | 75 |

### Suggested List of Student Activity

- Each student writes and submits the assignment on the topic of Methods of measurements, Precautions to avoid inaccuracy in measurements, Selection and Calibration of measuring instruments.
- Four students can be grouped as a batch to measure the various dimensions of taper shank drill bit and spur gear and submit the activity report. The activity report should have the diagram and various dimensions of the taper shank drill bit and spur gear.
- 3. Visit Industry to study the working of the CMM. Prepare a report.
- 4. Visit Industry to study the working of the Profile Projector. Prepare a report.
- 5. Study the various types of Comparator. Prepare a report.



| 1020234640 | METROLOGY AND MEASUREMENTS | L | Т | Ρ | С |
|------------|----------------------------|---|---|---|---|
| PRACTICUM  |                            | 1 | 0 | 4 | 3 |

### Text and Reference books.

- 1. R. K. Jain, Engineering Metrology, 22 nd Edition, Khanna Publishers, 2022.
- 2. N. V. Raghavendra and L. Krishnamurthy, Engineering Metrology and Measurements, Oxford University Press India, 2013.
- 3. R. K. Rajput, Engineering Metrology and Instrumentation, S.K. Kataria & amp; Sons, 2nd Edition, 2013.
- 4. Samir Mekid, Metrology and Instrumentation: Practical Applications for Engineering and Manufacturing, John Wiley & amp; Sons, Inc., 2021.
- 5. Anand K. Bewoor & amp; Vinay A. Kulkarni, Metrology & amp; measurement, Tata McGraw-Hill, 2009.
- 6. Rega Rajendra, Principles of Engineering Metrology, Jaico Publishing House, 2008.

#### Web-based/Online Resources

• https://archive.nptel.ac.in/courses/112/104/112104250/

### END SEMESTER EXAMINATIONS - PRACTICAL EXAM.

#### SCHEME OF EVALUATION

| PART | DESCRIPTION               | MARKS |  |  |
|------|---------------------------|-------|--|--|
| Α    | A Procedure / Preparation |       |  |  |
| В    | Observation / Dimensions  | 20    |  |  |
| С    | Accuracy                  | 20    |  |  |
| D    | Result                    | 10    |  |  |
| E    | Viva voce                 | 10    |  |  |
| F    | Written test              | 30    |  |  |
|      |                           | 100   |  |  |

**Note:** For the written test 30 MCQ shall be asked from the theory portions.



| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

# LIST OF EQUIPMENTS

| S. No | Name of the Equipment      | Quantity required   |
|-------|----------------------------|---------------------|
| 1     | Vernier Caliper            | 2 nos               |
| 2     | Digital Vernier Caliper    | 2 nos               |
| 3     | Outside Micrometer         | 2 nos               |
| 4     | Digital Outside Micrometer | 2 nos               |
| 5     | Inside Micrometer          | 2 nos               |
| 6     | Digital Inside Micrometer  | 2 nos               |
| 7     | Slip Gauges                | 2 nos               |
| 8     | Vernier Height Gauge       | 1 no                |
| 9     | Surface Plate              | 2 nos               |
| 10    | Dial Indicator (0-10)      | 2 nos               |
| 11    | Universal Bevel Protractor | 2 nos               |
| 12    | Sine Bar with Slip gauges  | 2 nos               |
| 13    | Screw Thread Micrometer    | 2 nos               |
| 14    | Gear Tooth Vernier Caliper | 1 no                |
| 15    | Mechanical Comparator      | 1 No.               |
|       | Consumable                 | Sufficient Quantity |



#### Introduction

Design plays a major role in developing engineering and technology. Machine Design is the creation of new and better machines and improving the existing ones. Elements Design is the process of selection of the material, shape, size and arrangement of mechanical elements so that the machine will perform its task. A process which includes design of all parts of a machine subjected to carry the forces without failure by transforming other forms of energy into mechanical energy.

#### **Course Objectives**

The objective of this course is to enable the student to apply the various design procedures, principles and various stresses in the elements of machine design.

- 1. To understand and apply to Solve the problems of various types of failures, and design of joints.
- 2. To apply the Design procedure of keys and coupling.
- 3. To apply the Design procedure of belt drives and selection of belt drives.
- 4. To apply the design procedure of supported rotating element.
- 5. To understand the concept of Computer Aided Design.

#### **Course Outcome**

After successful completion of this course, the students can able to

CO1: Calculate the dimensions of shaft and key for a given application

CO2: Design a coupling for a given application.

CO3:Select proper belt drive from manufacturers catalogue for power transmission under specified condition

CO4: Design journal bearing and spur gear based on a given applications

CO5: Practice the CAD activities in various stages of product design

#### Prerequisites

Mathematics, Engineering Mechanics, Strength of Materials, and Engineering Drawing.





#### Assessment Methodology

|                       | C                           | ontinuous Asses                        | sment (40 marks                      | s)                   | End Semester              |
|-----------------------|-----------------------------|----------------------------------------|--------------------------------------|----------------------|---------------------------|
|                       | CA1                         | CA2                                    | CA3                                  | CA4                  | Examination<br>(60 marks) |
| Mode                  | Written test<br>(Two units) | Written test<br>(Another Two<br>units) | Quiz<br>MCQ<br>(Online /<br>Offline) | Model<br>Examination | Written<br>Examination    |
| Duration              | 2 Periods                   | 2 Periods                              | 1 Hour                               | 3 Hours              | 3 Hours                   |
| Exam Marks            | 40                          | 40                                     | 60                                   | 100                  | 100                       |
| Converted<br>to       | 15                          | 15                                     | 5                                    | 20                   | 60                        |
| Marks                 | 15                          |                                        | 5                                    | 20                   | 60                        |
| Tentative<br>Schedule | 6th Week                    | 12th Week                              | 13-14th Week                         | 16th Week            |                           |

**CA1 and CA2:** Assessment written test should be conducted for 40 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer Two questions (2 X 20 Marks = 40 Marks).

Four questions will be asked, students should write Two questions. Each unit Two questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

**CA3:** 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.



**CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

# Question Pattern:

Answer Five questions by selecting One question from each unit. Each question carries 20 marks each.

Two questions will be asked from every unit, students should write any One question. The question may have two subdivisions only.

# CO-PO Mapping

| CO/PO | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|-------|-----|-----|-----|-----|-----|-----|-----|
| C01   | 3   | 3   | 3   |     |     |     |     |
| C02   | 3   | 3   | 3   |     |     |     |     |
| C03   | 3   | 3   | 3   |     |     |     |     |
| C04   | 3   | 3   | 3   |     |     |     |     |
| C05   | 3   | 2   | 3   |     |     |     |     |



# Syllabus Contents.

| THEORY                                                                            |                                                                             |    |  |  |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----|--|--|--|
| Unit I                                                                            | Fundamentals of Design and Stresses                                         |    |  |  |  |
| Introductior                                                                      | about Component Design. Engineering materials - Factors affecting           | 8  |  |  |  |
| selection of                                                                      | f materials BIS designation of Ferrous materials – Preferred number -       |    |  |  |  |
| Factor of s                                                                       | afety and allowable stress - Stresses: Tension, Compression, Shear,         |    |  |  |  |
| bearing pre                                                                       | essure intensity, crushing, bending and torsion- Problem. Composite         |    |  |  |  |
| Material, typ                                                                     | pes, property and applications.                                             |    |  |  |  |
| Creep stra                                                                        | in and Creep Curve- Fatigue, S-N curve, Endurance Limit Stress              |    |  |  |  |
| Concentrati                                                                       | on. Theories of Elastic Failures Principal normal stress theory,            |    |  |  |  |
| Maximum s                                                                         | hear stress theory & Maximum distortion energy theory.                      |    |  |  |  |
| Unit II                                                                           | Design Of Coupling and Keys                                                 | •  |  |  |  |
| Couplings, I                                                                      | Requirements of good couplings, types – design of rigid protected type      | 9  |  |  |  |
| flange coup                                                                       | blings marine coupling pin type flexible couplings (description only).      |    |  |  |  |
| Keys - Type                                                                       | es of keys - design of sunk keys only - Effect of keyways on shaft -        |    |  |  |  |
| problems.                                                                         |                                                                             |    |  |  |  |
| Unit III                                                                          | Design of Flat Belts and V-Belts                                            | •  |  |  |  |
| Flat Belts:                                                                       | Types of belts - materials for belt - types of belt drives - Speed ratio -  | 10 |  |  |  |
| effect of s                                                                       | lip - length of flat belts -Tension Ratio. centrifugal tension - power      |    |  |  |  |
| transmitted - condition for maximum power - transmission - Initial Tension -      |                                                                             |    |  |  |  |
| Design procedure of flat belts - Design of flat belt based on manufacturer's data |                                                                             |    |  |  |  |
| only – problems.                                                                  |                                                                             |    |  |  |  |
| V-belt drive                                                                      | - comparison with flat belt drive - designation of V belts - length of belt |    |  |  |  |
| - power transmitted - Design of V-belt using manufacturer's data only - Problem.  |                                                                             |    |  |  |  |



# DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 2023 REGULATION

DME

| Unit IV                                                                         | Design of Bearings                                                         |   |  |  |  |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|---|--|--|--|
| Bearings: (                                                                     | Classifications of bearings - sliding contact and rolling contact bearings | 9 |  |  |  |
| - radial and                                                                    | thrust bearings - roller bearing – types.                                  |   |  |  |  |
| Designation                                                                     | of ball bearings - materials used for bearings - design of journal         |   |  |  |  |
| bearings he                                                                     | at generated, heat dissipated, cooling oil requirement - Problems.         |   |  |  |  |
| Design of jo                                                                    | urnal bearings problems, design based on approved date book only.          |   |  |  |  |
| (No problen                                                                     | n from dimensionless parameters)                                           |   |  |  |  |
| Unit V                                                                          | Computer Aided Design (CAD) and Geometric Modelling                        |   |  |  |  |
| CAD – Role                                                                      | s of CAD in design - Development and uses – applications, advantages,      | 9 |  |  |  |
| Product life                                                                    | cycle.                                                                     |   |  |  |  |
| Design pro                                                                      | ocess: Sequential Engineering – Concurrent Engineering, Value              |   |  |  |  |
| Engineering                                                                     | Engineering, Lean Manufacturing System.                                    |   |  |  |  |
| Geometric modelling, Solid modelling representation in CAD, Solid modelling     |                                                                            |   |  |  |  |
| approaches, Constructive Solid Geometry, Boundary representation - Comparison - |                                                                            |   |  |  |  |
| Finite Eleme                                                                    | ent analysis - Prototype. (New Product Development technique)              |   |  |  |  |

NOTE: Printed approved Design Data Books are permitted for all examinations / Approved data books abstract copy attested by the HOD and Principal can be used.

### Suggested list of Students Activity

- 1. Online MCQ shall be conducted for each unit.
- 2. Presentation and Seminar can be conducted.
- 3. Seminars about the product development process can be given.
- 4. Simulation practices of design and analysis can be given.



# Reference Books

- 1. Machine Design, Pandya & Shah, 20th Edn. 2015, Charotar Publishing House.
- 2. Machine Design, T. V. Sundararajamoorthy & N. Shanmugam, Revised Edition June-2018–Anuradha Publications.
- 3. Design Data Book by PSG College of Technology, DPV Printers.
- 4. A textbook of Machine Design, R.S. Khurmi & J.K.Gupta, Edn. 18,2005, S. Chand Publishing.
- 5. Design of Machine Elements, Bandari, 4th Edition 2016, Tata McGraw-Hill , New Delhi.
- 6. Mechanics of Composite Materials, Second Edition, 2006 Autar K. Kaw, Taylor & Francis Group.
- 7. "R.Radhakrishnan, and S.Subramanian, "CAD/CAM/CIM"2018, New Age International Pvt Limited.

#### Web Reference

- https://nptel.ac.in/courses/112/105/112105125/
- https://nptel.ac.in/courses/112/105/112105124/
- https://nptel.ac.in/courses/112/106/112106137/

#### END SEMESTER QUESTION PATTERN - Theory Exam,

**DURATION: 3 Hrs.** 

#### Max. Marks : 100

#### **Question Pattern:**

Answer Five questions by selecting One question from each unit. Each question carries 20 marks each. Printed Design Data Book and Approved abstract of the Data Book can be permitted.

#### Instruction to Question setters.

Two questions will be asked from every unit, students should write any One question. The question may have two subdivisions only.



| 1020235230 | INDUSTRIAL ENGINEERING AND | L | Т | Ρ | С |
|------------|----------------------------|---|---|---|---|
| PRACTICUM  | MANAGEMENT                 | 3 | 0 | 2 | 4 |

#### Introduction

In the Indian Economy, Industries and enterprises always find a prominent place. After globalization, the government of India has announced a liberalization policy of starting an enterprise which resulted in the mushroom growth of industries. The present day students should be trained not only in manufacturing processes but also in managing activities of industries. Training must be imparted to students not only to shape them as technicians but also as good managers. The knowledge about plant, safety, work study techniques, personnel management and financial management will definitely mould the students as managers to suit the industries. Due to the presence of such personalities the industries will leap for better prosperity and development.

#### **Course Objectives**

The objective of this course is to enable the student to

- To study the different types of layout.
- To study the safety aspects and its impacts on an organization.
- To study different work measurement techniques.
- To study the staff selection procedure and training of them.
- To study capital and resources of capital.
- To study inventory control systems.
- To study engineering ethics and human values.

#### **Course Outcomes**

On successful completion of this course, the student will be able to

- CO1: Select the plant layout by incorporating plant safety procedure
- CO2: Apply work study principles as a tool for plant management
- CO3: Describe the principles of management used in industries
- CO4: Apply various inventory control techniques in material management
- CO5: Describe modern management techniques used in shop floor



| 1020235230 | INDUSTRIAL ENGINEERING AND | L | Т | Ρ | С |
|------------|----------------------------|---|---|---|---|
| PRACTICUM  | MANAGEMENT                 | 3 | 0 | 2 | 4 |

### **Pre-requisites**

Basic knowledge of industries and its practices (through Industrial Visits)

# CO/PO Mapping

| CO / PO | P01 | P02 | P03 | PO4 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   |     |     |     |     |     |     |
| C02     | 3   |     |     | 2   |     |     |     |
| C03     | 3   |     |     |     |     |     |     |
| C04     | 3   |     |     | 2   |     |     |     |
| C05     | 3   |     |     |     |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy

- Conduct group discussions on plant safety
- Encourage students to know about the share market details(BSE,NSE)
- Use powerpoint presentations.



| L | Т | Ρ | С |
|---|---|---|---|
| З | 0 | 2 | 4 |

### Assessment Methodology:

|                       | Co                                           | End                                              |                                   |                                                  |                                                            |
|-----------------------|----------------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------------|------------------------------------------------------------|
|                       | CA1                                          | CA2                                              | CA3                               | CA4                                              | Examination<br>(60 marks)                                  |
| Mode                  | Written Test<br>Theory<br>(Any Two<br>Units) | Written Test<br>Theory<br>(Another Two<br>Units) | Practical Test<br>(All Exercises) | Written Test<br>(Complete<br>Theory<br>Portions) | Written<br>Examination<br>(Complete<br>Theory<br>Portions) |
| Duration              | 2 Periods                                    | 2 Periods                                        | 3 Hours                           | 3 Hours                                          | 3 Hours                                                    |
| Exam Marks            | 50                                           | 50                                               | 100                               | 100                                              | 100                                                        |
| Converted<br>to       | 10                                           | 10                                               | 15                                | 15                                               | 60                                                         |
| Marks                 | 10                                           | 0                                                | 15                                | 15                                               | 60                                                         |
| Tentative<br>Schedule | 6th Week                                     | 12th Week                                        | 15th Week                         | 16th Week                                        |                                                            |

Note:

• CA1 and CA2: Assessment written test should be conducted for 50 Marks. The marks scored will be converted to 10 Marks for each test. Best of one will be considered for the internal assessment of 10 Marks.

CA1 and CA2, Assessment written test should be conducted for two units as below.

Answer any Five questions. (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions.

Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

• **CA 3:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one experiment by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded for 100 marks will be converted to 15 Marks for the internal mark.


| 1020235230 | INDUSTRIAL ENGINEERING AND | L | Т | Ρ | С |
|------------|----------------------------|---|---|---|---|
| PRACTICUM  | MANAGEMENT                 | 3 | 0 | 2 | 4 |

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. Each exercise/experiment should be evaluated for 10 Marks. The total marks awarded should be converted to 30 Marks for the practical test as per the scheme of evaluation as below.

#### The details of the practical documents to be prepared as per the instruction below.

Each exercise procedure and steps should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The reading and calculations and graph should be written by the student manually in the document.

The evaluated practical document should be submitted for the Practical Test (CA3). The mark scored by the students should be converted to 30 marks. The same should be included as per the allocation in the practical test.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| SI.No. | Description                         | Marks |
|--------|-------------------------------------|-------|
| A      | Aim                                 | 10    |
| В      | Procedure / Steps                   | 20    |
| С      | Explanation                         | 20    |
| D      | Report                              | 10    |
| E      | Practical document (All Practicals) | 30    |
| F      | Viva Voce                           | 10    |
|        | Total                               | 100   |

#### **SCHEME OF EVALUATION - Practical Test**



| 1020235230 | INDUSTRIAL ENGINEERING AND | L | Т | Ρ | С |
|------------|----------------------------|---|---|---|---|
| PRACTICUM  | MANAGEMENT                 | 3 | 0 | 2 | 4 |

**CA4:** Model examination should be conducted for complete theory portions as per the end semester question pattern. The marks awarded should be converted to 15 marks for the internal assessment.

#### **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

#### Syllabus Contents.

#### THEORY PORTION

| Unit I                                         | PLANT ENGINEERING AND PLANT SAFETY                                                                                                                                                                                                                                                                                   |   |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Plant Eng                                      | ineering : Plant – Selection of site of industry – Plant layout – types –                                                                                                                                                                                                                                            | 9 |
| process,                                       | product and fixed position – Plant maintenance – importance – Break                                                                                                                                                                                                                                                  | l |
| down mai                                       | ntenance, preventive maintenance and scheduled maintenance.                                                                                                                                                                                                                                                          | l |
| Plant Saf                                      | ety: Importance – Industrial safety and procedure-Improper handling-                                                                                                                                                                                                                                                 | l |
| accident ·                                     | $\cdot$ causes and cost of an accident - accident proneness - prevention of                                                                                                                                                                                                                                          | l |
| accidents                                      | -Settlement of industrial disputes - Indian Factories Act 1948 and its                                                                                                                                                                                                                                               | 1 |
| provisions                                     | related to health, welfare and safety.                                                                                                                                                                                                                                                                               | l |
| Unit II                                        | METHOD STUDY AND WORK MEASUREMENT                                                                                                                                                                                                                                                                                    |   |
| Method S                                       | tudy: Definition – Ergonomics-Basic procedure for conduct of method                                                                                                                                                                                                                                                  | 9 |
| study – 1                                      |                                                                                                                                                                                                                                                                                                                      |   |
|                                                | ools used – Operation process chart, Flow process chart, two handed                                                                                                                                                                                                                                                  |   |
| process c                                      | ools used – Operation process chart, Flow process chart, two handed hart- Man machine chart.                                                                                                                                                                                                                         |   |
| process c<br>Work Mea                          | ools used – Operation process chart, Flow process chart, two handed<br>hart- Man machine chart.<br>Isurement: Definition – Basic procedure in making a time study – Cycle                                                                                                                                            |   |
| process c<br>Work Mea<br>time and              | Tools used – Operation process chart, Flow process chart, two handed<br>hart- Man machine chart.<br>asurement: Definition – Basic procedure in making a time study – Cycle<br>Total Time-Techniques of work measurement - Ratio delay study,                                                                         |   |
| process c<br>Work Mea<br>time and<br>Synthesis | Tools used – Operation process chart, Flow process chart, two handed<br>hart- Man machine chart.<br>asurement: Definition – Basic procedure in making a time study – Cycle<br>Total Time-Techniques of work measurement - Ratio delay study,<br>from standard data, analytical estimating, Predetermined Motion Time |   |



PRACTICUM

# INDUSTRIAL ENGINEERING AND MANAGEMENT

| L | Т | Ρ | С |
|---|---|---|---|
| З | 0 | 2 | 4 |

| Unit III                                                                       | PRINCIPLES OF MANAGEMENT                                                  |    |  |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|----|--|
| Principles                                                                     | of Management: Definition of management – Administration -                | 9  |  |
| Organizati                                                                     | on – F.W. Taylor's and Henry Fayol's Principles of Management -           |    |  |
| Selection                                                                      | procedure - Training of workers - Apprentice training - On the job        |    |  |
| training a                                                                     | nd vestibule school training - wages and salary administration –          |    |  |
| Compone                                                                        | nts of wages.                                                             |    |  |
| Unit IV                                                                        | FINANCIAL AND MATERIAL MANAGEMENT                                         |    |  |
| Financial                                                                      | Management: Resources of capital - shares-preference and equity           | 9  |  |
| shares –                                                                       | debentures-Factory costing - direct cost - indirect cost - Factory        |    |  |
| overhead                                                                       | – Selling price of a product – Profit –. Depreciation – Causes –Methods - |    |  |
| Straight lir                                                                   | ne, sinking fund and percentage on diminishing value method               |    |  |
| Material Management: Objectives of good stock control system – ABC analysis of |                                                                           |    |  |
| inventory                                                                      | - Procurement and consumption cycle - Minimum Stock, Lead Time,           |    |  |
| Reorder Le                                                                     | evel - Economic order quantity – problems –Supply chain Management -      |    |  |
| Purchasin                                                                      | g Procedure- Bin card.                                                    |    |  |
| Unit V                                                                         | MODERN MANAGEMENT TECHNIQUES                                              |    |  |
| 5S concep                                                                      | ot - Just in Time(JIT) - Kaizen - ERP - Kanban - SQC - SPC - PPC - TPM -  | 9  |  |
| TQM - Qua                                                                      | ality tools - 7QC Tools - PDCA Cycle                                      |    |  |
| Six sigma                                                                      | - Industry 4.0 – Internet of things(IoT) - Cloud computing - AI and       |    |  |
| Machine L                                                                      | earning-Management Information System(MIS).                               |    |  |
|                                                                                | Theory Portions                                                           | 45 |  |
|                                                                                | Practical                                                                 | 20 |  |
|                                                                                | Practice + Revision + Test                                                | 10 |  |
|                                                                                | Total                                                                     | 75 |  |



#### **PRACTICAL EXERCISES**

#### 20 Periods

# 1. TO STUDY AND PREPARE OPERATION PROCESS CHART (OPC)FOR GIVEN ASSEMBLY AND SITUATION.

Assemble a Pedestal Electric Fan With Following Parts

- Base,
- pedestal,
- motor head ,
- switch set,
- rear guard,
- front guard,
- guard ring lock,
- blade,
- screws

#### 2. To Study & Prepare Flow Process Chart (FPC) for the given assembly.

Construct a Flow Process Chart for the following:

- Move bar stock from store to hacksaw Dist. 8 meter
- Cutting of bar stock Time 4 min
- Move to lathe machine Dist. 6-meter
- Turning Process Time 5 min
- Move to milling machine Dist. 7-meter
- Wait for milling machine Time 2 min
- Milling keyway Time 10 min

### 3. To study & Prepare Man-Machine (Multiple Activity) Chart for the given situation

A chamfering, turning and threading operation is done on a job on lathe machine. Information of that operation is recorded as under. Show this information on man and machine chart.

- Carry bar stock from the store. 1 min
- To fix the job in lathe chuck. 2 min
- To carryout manual turning of the job. 1.5 min



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 2 | 4 |

- To carryout chamfering operation on job 1 min
- To carry out threading operations on the job. 2 min
- To bring the saddle back and rearrange it 0.5 min
- To carry out threading work on the job. 1.5 min
- Inspection of the job. 1 min
- To remove the job from the lathe chuck. 0.5 min
- Carrying completed work piece to store 1 min
- 4. To study & Calculate coefficient of correlation for time study person using performance rating technique.

Find actual rating using basic time. Plot a graph of actual rating v/s observed rating.

- At a time one student will walk a distance of 25 feet in a normal way.
- Another student (time-keeper) will note down the time taken for that student to walk.
- All the remaining students will assign ratings to the student walking in the observation table.
- Time-keeper will give time for that student to all the students.
- Repeat the same procedure changing the time-keeper and the student walking
- Find basic time using observations.
- 5. To study & Calculate standard time for the given job.



Basic time = Observed time × Rating of worker /Standard Rating Work Content= Basic time + Relaxation & Incidental Allowances Standard Time= Work Content + Other Allowances



| 1020235230 | INDUSTRIAL ENGINEERING AND | L | Т | Ρ | С |
|------------|----------------------------|---|---|---|---|
| PRACTICUM  | MANAGEMENT                 | 3 | 0 | 2 | 4 |

#### 6. To Draw Two Handed Process Chart For Bolt, Washer & Nut Assembly

To draw left and right hand process charts and to conduct time study for the bolt, washer & nut assembly of present and improved methods.

```
% TIME SAVED = AVERAGE TIME TAKEN FOR AN ASSEMBLY OLD METHOD-AVERAGE TIME TAKEN FOR AN ASSEMBLY NEW METHOD
AVERAGE TIME TAKEN FOR AN ASSEMBLY OLD METHOD
```

#### **APPARATUS REQUIRED:**

- 1. Stop watch
- 2. Brass spindles
- 3. Nylon washers
- 4. Lock washers
- 5. Hexagonal nuts

#### Suggested List of Students Activity

Presentation/seminars by the students on modern management techniques.

Explore various plants during industrial visits.

Find the selling price of a product using ladder diagrams.

Find depreciation values of vehicles.

Find standard time for a particular job (in lathe) using stop watch time study methods.

#### Reference

- 1. S.C.Sharma & T.R. Banga, Industrial Engineering and Management, 2nd Edition, Khanna Book Publishing, 2022.
- 2. S.Chand, Industrial Engineering and Production Management, 3rd Edition, S. Chand Publishing, 2018.
- M.P.Poonia & S.C.Sharma, Industrial Safety and Maintenance Management,1 st Edition, Khanna Publishing, 2021.



#### Web-based Online Resources

- https://youtu.be/jFDWlKayrTc?si=oe4glWk9Qb18wxUx
- https://youtu.be/yhywrCChJBQ?si=7eXkcTyAsH8TNP6x

#### END SEMESTER QUESTION PATTERN - Theory Exam

#### Duration: 3 Hrs.

#### Max. Marks: 100

**Note:** Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

#### Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.



| 1020235331 | Modern OC Tools | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 2 | 0 | 2 | 3 |

#### Introduction

Quality Control (QC) is a critical aspect of manufacturing and service industries, ensuring that products and services meet predefined standards and customer expectations. Over the years, QC has evolved significantly, incorporating advanced techniques and tools to improve efficiency, accuracy, and reliability. Modern Quality Control tools are a combination of traditional methodologies and innovative technologies designed to enhance the quality management process.

#### **Course Objectives**

The objectives of this course is enable the student to

- Explain the basic Quality concepts and its objectives.
- Explain the Total Quality Management Principles.
- To learn the concept and properties of various Continuous improvement methods.
- Appreciate the benefits of implementing 5S, Kaizen concepts.
- Collect and classify various data.
- Determine the process capability of a manufacturing process through the construction of various control charts for variables and attributes.
- Knowledge and practice on construction of Quality and Management tools.

#### **Course Outcomes**

On successful completion of this course, the student able to

CO1: Explain the Quality concepts and techniques used in industries.

CO2: Acquire knowledge about various continuous improvement methods and its implementation techniques.

CO3: Interpret types of data on various control charts for improving the process.

CO4: Create QC charts using Seven tools of quality for problem solving and continuous improvement processes.

CO5: Adopt the seven management tools to identify improvement opportunities and develop implementation plans.



| 1020235331 | Modern OC Tools | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 2 | 0 | 2 | 3 |

#### **Pre-requisites**

Knowledge of basic Science

#### CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | PO4 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | 1   | -   | 1   | 1   | 2   | 1   |
| C02     | 3   | 2   | 1   | 1   | 2   | 1   | 1   |
| C03     | 2   | 2   | 1   | 2   | 1   | 1   | 1   |
| C04     | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| C05     | 1   | 1   | 1   | 1   | 1   | 1   | 1   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy

Active Learning: Activities for active learning can include think-pair-share strategies as well as kin-esthetic learning environment. Teachers can start a discussion to make sure students take ownership over their own participation and talk through new ideas and skills with peers. Teachers guide students as they construct their own knowledge and understanding.

Hands-on-Training: Conduct demonstrations and hands on training is all about applying the knowledge you have learned in training into practice.

Real time Learning: Instructors shall encourage the students to implement the techniques in their own place / Lab through the Industry-Institute interactions.



| 1020235331 | Modern OC Tools | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 2 | 0 | 2 | 3 |

#### Assessment Methodology:

|                       | Co                                           | ontinuous Asses                                  | sment (40 marks)                  | )                                                | End                                                        |
|-----------------------|----------------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------------|------------------------------------------------------------|
|                       | CA1                                          | CA2                                              | CA3                               | CA4                                              | Semester<br>Examination<br>(60 marks)                      |
| Mode                  | Written Test<br>Theory<br>(Any Two<br>Units) | Written Test<br>Theory<br>(Another Two<br>Units) | Practical Test<br>(All Exercises) | Written Test<br>(Complete<br>Theory<br>Portions) | Written<br>Examination<br>(Complete<br>Theory<br>Portions) |
| Duration              | 2 Periods                                    | 2 Periods                                        | 3 Hours                           | 3 Hours                                          | 3 Hours                                                    |
| Exam Marks            | 50                                           | 50                                               | 100                               | 100                                              | 100                                                        |
| Converted<br>to       | 10                                           | 10                                               | 15                                | 15                                               | 60                                                         |
| Marks                 | 10                                           | 0                                                | 15                                | 15                                               | 60                                                         |
| Tentative<br>Schedule | 6th Week                                     | 12th Week                                        | 15th Week                         | 16th Week                                        |                                                            |

Note:

• CA1 and CA2: Assessment written test should be conducted for 50 Marks. The marks scored will be converted to 10 Marks for each test. Best of one will be considered for the internal assessment of 10 Marks.

CA1 and CA2, Assessment written test should be conducted for two units as below.

Answer any Five questions. (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions.

Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

• **CA 3:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one experiment by lot for the test. The



| 1020235331 | Modern OC Tools | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 2 | 0 | 2 | 3 |

practical test should be conducted as per the scheme of evaluation as below. The marks awarded for 100 marks will be converted to 15 Marks for the internal mark.

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. Each exercise/experiment should be evaluated for 10 Marks. The total marks awarded should be converted to 30 Marks for the practical test as per the scheme of evaluation as below.

#### The details of the practical documents to be prepared as per the instruction below.

Each experiment procedure and steps should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The reading and calculations and graph should be written by the student manually in the documents.

The evaluated practical document should be submitted for the Practical Test (CA3). The mark scored by the students should be converted to 30 marks. The same should be included as per the allocation in the practical test.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| SI.No. | Description                         | Marks |
|--------|-------------------------------------|-------|
| А      | Aim / Description                   | 10    |
| В      | Procedure                           | 20    |
| С      | Presentation                        | 30    |
| D      | Practical document (All Practicals) | 30    |
| E      | Viva Voce                           | 10    |
|        | Total                               | 100   |

#### **SCHEME OF EVALUATION - Practical Test**



| 1020235331 | Modern OC Tools | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 2 | 0 | 2 | 3 |

**CA4:** Model examination should be conducted for complete theory portions as per the end semester question pattern. The marks awarded should be converted to 15 marks for the internal assessment.

#### **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

#### Syllabus Contents.

| Unit I BASICS OF QUALITY CONCEPTS                                                    |   |  |  |  |
|--------------------------------------------------------------------------------------|---|--|--|--|
| Definitions of the terms - Inspection, Quality, Quality Planning , Quality Control , | 6 |  |  |  |
| Quality Assurance , Quality Management - Dimensions of quality –Basics of Total      |   |  |  |  |
| Quality- Quality Statements - Strategic Planning - Evolution of Quality Management   |   |  |  |  |
| - Quality Awards - Introduction to TQM - Pillars of TQM - Characteristics - Basic    |   |  |  |  |
| concepts – Quality Objectives – Team Building - Barriers to TQM implementation –     |   |  |  |  |
| Potential benefits of TQM - Quality council - Duties - Responsibilities -Strategic   |   |  |  |  |
| planning – Factors influencing Quality Costs - Customer Focus – Employee             |   |  |  |  |
| Involvement                                                                          |   |  |  |  |
| Unit II CONTINUOUS PROCESS IMPROVEMENT                                               |   |  |  |  |
| Input / Output process model - Juran Trilogy - PDCA (Deming Wheel) cycle - 5S        | 6 |  |  |  |
| Concepts – SEIRI, SEITON, SEISO, SEIKETSU and SHITSUKE – needs and objectives        |   |  |  |  |
| – effective implementation of 5S concepts in an organisation – Kaizen – Gemba        |   |  |  |  |
| Kaizen – Housekeeping- Quality Circles and the Trade Unions – Reengineering -        |   |  |  |  |
| Characteristics – Advantages -Criticism of Reengineering-Supplier relationship       |   |  |  |  |
| Unit III STATISTICAL PROCESS CONTROL                                                 |   |  |  |  |



| 1020235331 | Modern OC Tools | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 2 | 0 | 2 | 3 |

| Definition - Statistics Data- definition , types and uses. Measures of general       | 6 |
|--------------------------------------------------------------------------------------|---|
| Tendency and Dispersion – Mean – Median – Mode – Introduction to measures of         |   |
| dispersion - Population and Sample - Statistical Process Control and SQC             |   |
| definition- Process Capability - Sampling -Control Charts and its types -            |   |
| Comparison of Variable and attributes – X bar and R (Problems) , Attributes – p , np |   |
| and c ChartsProcess capability analysis , Definition, steps and its uses.            |   |
|                                                                                      |   |

| Seven tools of quality (Q-7 tools) - Check sheet - Histogram - Cause and effect | 6 |
|---------------------------------------------------------------------------------|---|
| diagram - Pareto diagram - Scatter diagram - Flow charts - Control charts -     |   |
| Construction of above tools , types , Uses and Limitations                      |   |

# Unit V NEW SEVEN MANAGEMENT TOOLS , QUALITY MANAGEMENT SYSTEMS

| New seven management tools- Flow and its uses - Affinity diagram -                  | 6  |  |  |  |
|-------------------------------------------------------------------------------------|----|--|--|--|
| Interrelationship digraph or Relationship diagram - Tree diagram - Matrix           |    |  |  |  |
| diagram-Prioritization matrices – Process decision program chart – Activity network |    |  |  |  |
| diagramConstruction of above diagrams.                                              |    |  |  |  |
| Six sigma –Objectives , Methodology and Benefits – DMAIC -Quality Management        |    |  |  |  |
| System – ISO 9000 , ISO 14000 Documentation and Implementation – Total              |    |  |  |  |
| Productive Maintenance – Concepts and Needs.                                        |    |  |  |  |
| Theory portions                                                                     | 30 |  |  |  |
| Practical Exercise                                                                  | 20 |  |  |  |
| Revision + Test                                                                     | 10 |  |  |  |
| Total                                                                               | 60 |  |  |  |

#### PRACTICAL EXERCISE

Unit IV

- 1. The Six Sigma process typically follows the DMAIC framework: Define, Measure, Analyze, Improve, and Control.
- 2. Write the detailed steps for Lean Manufacturing.

SEVEN TOOLS OF QUALITY

3. Explain the statistical methods to monitor and control a process in SPC.



| 1020235331 | Modern OC Tools | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 2 | 0 | 2 | 3 |

- 4. Write steps to practice kaizen.
- 5. Write the procedure to followed for Failure Mode and Effects Analysis (FMEA)
- 6. Write the step by procedure for the RCA method of problem-solving.
- 7. Implement 5S on the shop floor and document the details.
- 8. Create the SPC for the dataset. Use control charts
- 9. Carry out the Root Cause Analysis (RCA) for the sample
- 10. Carry out Pareto Analysis. and document the finding.

#### Suggested List of Students Activity

Quality Audits and Inspections:

- Participating in regular quality audits and inspections of manufacturing processes and products.
- Learning to use inspection tools and techniques to identify defects and ensure compliance with quality standards.
- Documenting findings and suggesting improvements to enhance product quality.

Statistical Process Control (SPC) Projects:

- Using SPC tools to monitor and control manufacturing processes.
- Collecting and analyzing data to identify trends, variations, and potential issues.
- Implementing corrective actions based on data analysis to maintain consistent product quality.

Root Cause Analysis (RCA) and Problem-Solving Activities:

- Engaging in RCA to investigate quality issues and determine their underlying causes.
- Using problem-solving methodologies such as the 5 Whys, Fishbone Diagrams, and Failure Mode and Effects Analysis (FMEA).
- Developing and implementing action plans to prevent recurrence of quality issues.

Lean Manufacturing and Continuous Improvement Initiatives:

- Participating in Lean Manufacturing activities to eliminate waste and improve efficiency.
- Engaging in continuous improvement projects such as Kaizen events, 5S implementation, and value stream mapping.



| 1020235331 | Modern OC Tools | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 2 | 0 | 2 | 3 |

• Contributing to the development of standard operating procedures (SOPs) and best practices to sustain high-quality standards.

#### Reference

- 1. "Quality Control and Total Quality Management" by P.L. Jain, Tata McGraw Hill Education.
- "Total Quality Management" by Dale H. Besterfield, Carol Besterfield-Michna, Glen H. Besterfield, Mary Besterfield-Sacre, Pearson Education.
- "Statistical Quality Control" by Eugene L. Grant, Richard S. Leavenworth, Tata McGraw Hill Education.
- "Total Quality Management: Principles and Practice" by S. K. Mandal, Vikas Publishing House.
- 5. "Six Sigma for Business Excellence: Approach, Tools and Applications" by Hemant Urdhwareshe, Pearson Education
- "Quality Assurance and Quality Control in the Analytical Chemical Laboratory: A Practical Approach, Second Edition" by Piotr Konieczka, Jacek Namieśnik, CRC Press (Distributed in India).

#### END SEMESTER EXAMINATION QUESTION PATTERN – Theory Exam

#### Duration: 3 Hrs.

#### Max. Marks: 100

**Note:** Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

#### Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.



| 1020235332 | Composite Materials | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

#### Introduction

The field of composite materials has seen significant advancements. The development of new composite manufacturing techniques has made it feasible to modify the characteristics of traditional materials to meet specifications. Diploma holders in this course are required to make use of different composite materials and its manufacturing techniques for different end use applications. To do this, it is essential to instruct them on the fundamentals of metal matrix composites, ceramic composites, polymer matrix composites, and more modern advanced composites, as well as their properties, production methods, and mechanical testing applications. This course seeks to increase understanding of the several types of composite materials used in industries, including their types, testing, and applications.

#### **Course Objectives**

The objective of this course is to prepare the student.

- To understand the types of composite materials, matrix, and reinforcements.
- To equip with knowledge on polymer matrix composites and their production
- To impart knowledge in the manufacturing process and application of various types of metal matrix composites and ceramic composites.
- To become familiar with the recent developments in polymer composite manufacturing.
- To acquire knowledge of selecting suitable composites for industrial applications and the response of composite structures subjected to mechanical loading.

#### **Course Outcomes**

On successful completion of this course, the student will be able to,

CO1: Identify the types of composites and the properties of matrix and reinforcements.

CO2: Familiarize the methods used to manufacture polymer matrix composites(PMC) and its applications in different environments.

CO3: Explain the manufacturing methods, concepts and applications of metal matrix composite(MMC) and ceramics composites.

CO4: Explain the recent development in composite manufacturing and its applications.

CO5: Apply the concept of composite materials for various applications with the support of mechanical testing.



| 1020235332 | Composite Materials | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

#### **Pre-requisites**

Knowledge about the different materials, Basic Chemistry. Material Science

#### CO/PO Mapping

| CO / PO | P01 | P02 | P03 | PO4 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   |     |     | 1   |     |     | 1   |
| C02     | 3   |     |     | 1   |     |     | 1   |
| C03     | 3   |     |     | 1   |     |     | 1   |
| C04     | 3   |     |     | 1   |     |     | 1   |
| C05     | 3   |     |     | 1   |     |     | 1   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation1

#### Instructional Strategy

It is advised that teachers take steps to pique pupils' attention and boost their curiosity to learn. Implement task-based learning activities where students work on specific tasks or projects.

Incorporate technology tools and resources, such as online platforms, interactive multimedia, and virtual communication tools, to enhance engagement and provide additional practice opportunities.

Incorporate formative and summative assessments to gauge student progress and provide targeted feedback.

Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.

All demonstrations/Hand-on practices may be followed in the real environment as far as possible.



| 1020235332 | Composite Materials | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

#### Assessment Methodology:

|            | Co           | ontinuous Asses | sment (40 marks) |              | End         |
|------------|--------------|-----------------|------------------|--------------|-------------|
|            |              |                 |                  |              | Semester    |
|            | CA1          | CA2             | CA3              | CA4          | Examination |
|            |              |                 |                  |              | (60 marks)  |
|            | Written Test | Written Test    |                  | Written Test | Written     |
|            | Theory       | Theory          | Practical Test   | (Complete    | Examination |
| Mode       |              | (Another Two    |                  | Theory       | (Complete   |
|            |              |                 |                  | Dortiona     | Theory      |
|            | Units)       | Units)          |                  | Portions)    | Portions)   |
| Duration   | 2 Periods    | 2 Periods       | 3 Hours          | 3 Hours      | 3 Hours     |
| Exam Marks | 50           | 50              | 100              | 100          | 100         |
| Converted  | 10           | 10              | 15               | 15           | 60          |
| to         | 10           | 10              | 15               | 15           | 00          |
| Marks      | 1            | 0               | 15               | 15           | 60          |
| Tentative  | 6th Week     | 12th Week       | 15th Week        | 16th Week    |             |
| Schedule   |              |                 |                  |              |             |

Note:

• CA1 and CA2: Assessment written test should be conducted for 50 Marks. The marks scored will be converted to 10 Marks for each test. Best of one will be considered for the internal assessment of 10 Marks.

CA1 and CA2, Assessment written test should be conducted for two units as below.

Answer any Five questions. (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions.

Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

• **CA 3:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one experiment by lot for the test. The



| 1020235332 | Composite Materials | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

practical test should be conducted as per the scheme of evaluation as below. The marks awarded for 100 marks will be converted to 15 Marks for the internal mark.

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. Each exercise/experiment should be evaluated for 10 Marks. The total marks awarded should be converted to 30 Marks for the practical test as per the scheme of evaluation as below.

#### The details of the practical documents to be prepared as per the instruction below.

Each exercise the procedure and steps should be completed on the day of practice.

The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The reading and calculations and graph should be written by the student manually in the documents.

The evaluated practical document should be submitted for the Practical Test (CA3). The mark scored by the students should be converted to 30 marks. The same should be included as per the allocation in the practical test.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| SI.No. | Description                             | Marks |
|--------|-----------------------------------------|-------|
| Α      | Aim / Description                       | 10    |
| В      | Procedure / Tools used / Implementation | 20    |
| С      | Presentation / Report                   | 30    |
| D      | Practical document (All Practicals)     | 30    |
| E      | Viva Voce                               | 10    |
|        | Total                                   | 100   |

#### **SCHEME OF EVALUATION - Practical Test**



| 1020235332 | Composite Materials | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

**CA4:** Model examination should be conducted for complete theory portions as per the end semester question pattern. The marks awarded should be converted to 15 marks for the internal assessment.

#### **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

#### Syllabus Contents.

| UNIT - I    | INTRODUCTION TO COMPOSITES                                       |   |
|-------------|------------------------------------------------------------------|---|
| Fundamer    | itals of composites-matrix and reinforcements                    | 6 |
| Matrix-     | Types of Matrix-Polymer matrix composites(PMC)-Metal Matrix      |   |
| Composite   | es(MMC)-Ceramics Matrix Composites- Concepts and different       |   |
| applicatio  | n                                                                |   |
| Reinforcer  | nents-Basic requirements of selection of Reinforcements-Types of |   |
| Reinforcer  | nents-Whiskers-Glass Fiber-Carbon fibers-Aramid fibers-Ceramic   |   |
| fibers-prop | perties and applications.                                        |   |
|             |                                                                  |   |
| UNIT-II     | MANUFACTURING OF POLYMER MATRIX COMPOSITES                       |   |
| Types of    | PPC manufacturing methods- Hand layup- Spray Layup-Compression   | 6 |
| Moulding-   | Sheet forming-Pultrusions-hot press and Autoclave-Filament       |   |
| Winding-B   | asic principles, construction and application of PPC.            |   |



| 1020235332 | Composite Materials | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

|             | MANUFACTURING OF METAL MATRIX COMPOSITES (MMC)                             | AND      |
|-------------|----------------------------------------------------------------------------|----------|
| UNI I-III   | CERAMICS MATRIX COMPOSITES (CMC)                                           |          |
| MMC ma      | nufacturing methods- Casting methods- Gravity and low pressure             | 6        |
| die-squeez  | e –spray forming-thixo-moulding- basic principles construction and         |          |
| application | IS                                                                         |          |
| CMC ma      | anufacturing Methods-Reaction Sintering-Electro Deposition-Spray           |          |
| forming-in  | filtration- basic principles construction and applications                 |          |
| UNIT-IV     | RECENT DEVELOPMENT IN COMPOSITE MANUFACTURING                              | <u> </u> |
| Advanced    | composites-self healing composites-micro and                               | 6        |
| nano-com    | posites-biodegradable composites-left handed composites-stiffer than       |          |
| stiff com   | posites-carbon and carbon composites- process, applications and            |          |
| limitations |                                                                            |          |
| UNIT-V      | SELECTION OF COMPOSITES AND MECHANICAL TESTING                             | <u>I</u> |
| Selection   | of composites for industrial applicationsdesign and process selection      | 6        |
| for new a   | applications- Daily usage-automobile sectors- aerospace - Product          |          |
| examples    | and applications.                                                          |          |
| Mechanica   | al testing of Composites-Tensile testing-fatigue testing (three-point bend |          |
| test)-Toug  | hness mechanism-basic testing procedure, equipment used and test           |          |
| application | IS.                                                                        |          |
| Practical e | xercise                                                                    | 20       |
| Exercise 1  | : Material Properties Comparison.                                          |          |
| Exercise 2  | Composite Material Selection.                                              |          |
| Exercise 3  | : Hand Lay-Up Process.                                                     |          |
| Exercise 4  | : Mechanical Testing - Test and analyze the mechanical properties of       |          |
| composite   | materials.                                                                 |          |
| Exercise 5  | : Finite Element Analysis (FEA)                                            |          |
| Exercise 6  | : Micromechanics Analysis - Explore the microscale interactions within     |          |
| composite   | materials.                                                                 |          |
|             | ASSESSMENT TEST AND REVISION                                               | 10       |
|             | TOTAL                                                                      | 60       |



| 1020235332 | Composite Materials | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

#### Suggested List of Students Activity

- 1. Visit the composite laboratory.
- 2. Identify the composite materials used in the Automobile industries.

#### Reference

- 1. Suresh, S., Martensen, A., and Needleman, A., "Fundamentals of Metal MatrixComposites", Butterworth, Heinemann, 2013.ISBN: 0080523714, 9780080523712.
- Strong, A. Brent, "Fundamentals of Composites Manufacturing : Materials, Methods and Applications", First Edition, Society of Manufacturing Engineers, 2008, ISBN 13: 9780872638549.
- 3. Ru-Min Wang,Shui-Rong Zheng,Ya-Ping Zheng,"Polymer Matrix Composites and Tchnology", First Edition, Woodhead publisher, 2011, ISBN:978-0-85709-221-2.

#### **ONLINE WEB REFERENCES**

- https://archive.nptel.ac.in/courses/112/104/112104229/
- https://nptel.ac.in/courses/112104168
- https://archive.nptel.ac.in/courses/101/104/101104010/

#### **List of Equipments Required**

Computer - 10 Nos. Kit and setup required for the Composite Lay up. Software required for the FEA.



#### END SEMESTER EXAMINATION QUESTION PATTERN – Theory Exam

Duration: 3 Hrs.

Max. Marks: 100

Note: Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

#### Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.



| 1020235333 | Refrigeration and Air Conditioning | L | Т | Ρ | С |
|------------|------------------------------------|---|---|---|---|
| PRACTICUM  | ······g·······g                    | 2 | 0 | 2 | 3 |

#### Introduction

Industrial refrigeration and air conditioning play a crucial role in various sectors, ensuring the preservation of perishable goods, maintaining comfortable and safe environments, and supporting industrial processes that require specific temperature and humidity conditions. These systems are integral to the efficient operation of many industries, from food and beverage to pharmaceuticals, chemicals, and manufacturing.

#### **Course Objectives**

- To understand the basics of Refrigeration cycles.
- To understand basics of vapour compression and vapour absorption systems.
- To identify components and refrigerants and lubricants of a refrigeration system.
- To understand control strategies for refrigeration systems.
- To understand the basics about air conditioning systems.

#### **Course Outcomes**

At the end of the course, the student will be able to: CO1 Explain the refrigeration and types of Refrigeration cycles CO2 Describe Vapour Compression and Vapour Absorption System CO3 Identify the equipments required for the refrigeration system. CO4 Identify the components for a refrigeration system. CO5 Explain the working principles of Air-conditioning.

#### **Pre-requisites**

Knowledge on Heat, Thermodynamics



| 1020235333 | Refrigeration and Air Conditioning | L | Т | Ρ | С |
|------------|------------------------------------|---|---|---|---|
| PRACTICUM  | Kenigeration and Air Conationing   | 2 | 0 | 2 | 3 |

#### CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   |     |     |     |     |     |     |
| C02     | 3   |     |     |     | 1   |     |     |
| C03     | 3   |     |     |     | 1   |     |     |
| CO4     | 3   |     |     |     |     |     |     |
| C05     | 3   |     |     |     |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy

Active Learning: Activities for active learning can include think-pair-share strategies as well as kin-esthetic learning environment. Teachers can start a discussion to make sure students take ownership over their own participation and talk through new ideas and skills with peers. Teachers guide students as they construct their own knowledge and understanding.

Hands-on-Training: Conduct demonstrations and hands on training is all about applying the knowledge you have learned in training into practice.

Real time Learning: Instructors encourage the students to implement the techniques in their own place / Lab through the Industry-Institute interactions.



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 2 | 0 | 2 | 3 |

#### Assessment Methodology:

|            | Co           | ontinuous Asses | sment (40 marks) |              | End         |
|------------|--------------|-----------------|------------------|--------------|-------------|
|            |              |                 |                  |              | Semester    |
|            | CA1          | CA2             | CA3              | CA4          | Examination |
|            |              |                 |                  |              | (60 marks)  |
|            | Written Test | Written Test    |                  | Written Test | Written     |
|            | Theory       | Theory          | Practical Test   | (Complete    | Examination |
| Mode       |              | (Another Two    |                  | Theory       | (Complete   |
|            |              |                 | (All Exercises)  | Dertiene     | Theory      |
|            | Units)       | Units)          |                  | Portions)    | Portions)   |
| Duration   | 2 Periods    | 2 Periods       | 3 Hours          | 3 Hours      | 3 Hours     |
| Exam Marks | 50           | 50              | 100              | 100          | 100         |
| Converted  | 10           | 10              | 15               | 15           | 60          |
| to         | 10           | 10              | 10               | 10           | 00          |
| Marks      | 1            | 0               | 15               | 15           | 60          |
| Tentative  | 6th Week     | 12th Week       | 15th Week        | 16th Week    |             |
| Schedule   |              |                 |                  |              |             |

Note:

• CA1 and CA2: Assessment written test should be conducted for 50 Marks. The marks scored will be converted to 10 Marks for each test. Best of one will be considered for the internal assessment of 10 Marks.

CA1 and CA2, Assessment written test should be conducted for two units as below.

Answer any Five questions. (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions.

Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

• **CA 3:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one experiment by lot for the test. The



| 1020235333 | Refrigeration and Air Conditioning | L | Т | Ρ | С |
|------------|------------------------------------|---|---|---|---|
| PRACTICUM  |                                    | 2 | 0 | 2 | 3 |

practical test should be conducted as per the scheme of evaluation as below. The marks awarded for 100 marks will be converted to 15 Marks for the internal mark.

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. Each exercise/experiment should be evaluated for 10 Marks. The total marks awarded should be converted to 30 Marks for the practical test as per the scheme of evaluation as below.

#### The details of the practical documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be written in a separate notebook or a printed manual or a file with documents. The reading and calculations and graph/ should be written by the student manually in the documents.

The evaluated practical document should be submitted for the Practical Test (CA3). The mark scored by the students should be converted to 30 marks. The same should be included as per the allocation in the practical test.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| SI.No. | Description                            | Marks |
|--------|----------------------------------------|-------|
| Α      | Aim / Description                      | 10    |
| В      | Procedure / Formulae used / Adjustment | 20    |
| С      | Calculation / Report                   | 20    |
| D      | Result                                 | 10    |
| E      | Practical document (All Practicals)    | 30    |
| F      | Viva Voce                              | 10    |
|        | Total                                  | 100   |

**SCHEME OF EVALUATION - Practical Test** 



| 1020235333 | Refrigeration and Air Conditioning  | L | Т | Ρ | С |
|------------|-------------------------------------|---|---|---|---|
| PRACTICUM  | Refrigeration and Air Contractoring | 2 | 0 | 2 | 3 |

**CA4:** Model examination should be conducted for complete theory portions as per the end semester question pattern. The marks awarded should be converted to 15 marks for the internal assessment.

#### **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

#### Syllabus Contents.

| UNIT - I                                                                              | Introduction to Refrigeration                                               |   |  |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---|--|
| Definition o                                                                          | f Refrigeration; Refrigerating effect-unit of refrigeration- Coefficient of | 7 |  |
| performance; Types of Refrigeration-Ice, dry ice, Steam jet, Throttling, Liquid       |                                                                             |   |  |
| nitrogen refrigeration; Carnot refrigeration Cycle; Air refrigeration- Bell - Coleman |                                                                             |   |  |
| cycle, PV&                                                                            | TS diagram; Advantage and disadvantages in air refrigeration; Simple        |   |  |
| problems                                                                              |                                                                             |   |  |
| Unit - II                                                                             | Refrigeration systems                                                       |   |  |
| Basic Com                                                                             | ponents, Flow diagram of working of Vapour compression cycle;               | 7 |  |
| Representat                                                                           | ion of the vapour compression cycle on P-H, T-S & P-V Diagram;              |   |  |
| Expression                                                                            | for Refrigerating effect, work done and power required; Types of Vapour     |   |  |
| Compressio                                                                            | n cycle; Effects of superheating and undercooling, its advantages and       |   |  |
| disadvantag                                                                           | es; Simple Vapour absorption cycle and its flow diagram; Simple             |   |  |
| Electrolux system for domestic units; Comparison of Vapour absorption and vapour      |                                                                             |   |  |
| compressio                                                                            | n system; Simple problems on vapour compression cycle.                      |   |  |



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 2 | 0 | 2 | 3 |

| Unit - III                                                                                      | Refrigeration equipments                                                                                                                                                                                |    |
|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Compresso                                                                                       | - types of compressors; Hermetically sealed and Semi hermetically                                                                                                                                       | 7  |
| sealed com                                                                                      | pressor; Condensers - Air Cooled, water cooled, natural and forced                                                                                                                                      |    |
| draught coo                                                                                     | ling system; Advantages and disadvantages of air cooled and water                                                                                                                                       |    |
| cooled con                                                                                      | densers; Evaporators -natural, convection, forced convection types.                                                                                                                                     |    |
| Refrigerants                                                                                    | and lubricants: Introduction to refrigerants; Properties of good                                                                                                                                        |    |
| refrigerants;                                                                                   | Classification of refrigerants by group number and commonly used                                                                                                                                        |    |
| refrigerants                                                                                    | in practice; Detection of refrigerants leakage; Charging the system with                                                                                                                                |    |
| refrigerant; l                                                                                  | ubricants used in refrigeration and their properties.                                                                                                                                                   |    |
| Unit - IV                                                                                       | Refrigerant flow controls                                                                                                                                                                               |    |
| Capillary tu                                                                                    | be; Automatic Expansion valve; Thermostatic expansion valve; High                                                                                                                                       | 7  |
| side and lo                                                                                     | ow side float valve; Solenoid valve; Evaporator pressure regulator.                                                                                                                                     |    |
| Application                                                                                     | of refrigeration: Slow and quick freezing; Cold storage and Frozen                                                                                                                                      |    |
| storage; Dairy refrigeration; Ice making industry; Water coolers.                               |                                                                                                                                                                                                         |    |
| Unit - V                                                                                        | Air conditioning                                                                                                                                                                                        |    |
| Introduction                                                                                    | to Air conditioning; Factors affecting Air conditioning; Psychrometry -                                                                                                                                 | 7  |
| Psychromet                                                                                      | ric chart and its use; Psychometric process - sensible heating and                                                                                                                                      |    |
| cooling, Hur                                                                                    | nidifying and dehumidifying; Adiabatic saturation process; Equipments                                                                                                                                   |    |
| used in air                                                                                     | conditioning cycle; Air conditioning units and plants. Refrigeration and                                                                                                                                |    |
| Air-conditio                                                                                    | ning tools: Tools used in refrigeration and Air conditioner installation;                                                                                                                               |    |
| Installation procedure; Faults in refrigeration and air conditioning system; Servicing          |                                                                                                                                                                                                         |    |
|                                                                                                 | procedure; Faults in refrigeration and air conditioning system; Servicing                                                                                                                               |    |
| procedure.                                                                                      | procedure; Faults in refrigeration and air conditioning system; Servicing                                                                                                                               |    |
| procedure.                                                                                      | procedure; Faults in refrigeration and air conditioning system; Servicing <b>EXERCISE</b>                                                                                                               | 20 |
| procedure.<br><b>PRACTICAL</b><br>1. Conduct a                                                  | EXERCISE<br>a test on the cooling tower and determine its efficiency.                                                                                                                                   | 20 |
| procedure.<br><b>PRACTICAL</b><br>1. Conduct a<br>2. Determin                                   | EXERCISE<br>a test on the cooling tower and determine its efficiency.<br>The the cooling capacity and cop of the given vapour compression                                                               | 20 |
| procedure.<br><b>PRACTICAL</b><br>1. Conduct a<br>2. Determin<br>refrigeration                  | EXERCISE<br>a test on the cooling tower and determine its efficiency.<br>he the cooling capacity and cop of the given vapour compression<br>system                                                      | 20 |
| procedure.<br><b>PRACTICAL</b><br>1. Conduct a<br>2. Determin<br>refrigeration<br>3. Setting an | EXERCISE<br>a test on the cooling tower and determine its efficiency.<br>The the cooling capacity and cop of the given vapour compression<br>a system<br>and adjustment of the refrigeration components | 20 |



| 1020235333 | Refrigeration and Air Conditioning     | L | Т | Ρ | С |
|------------|----------------------------------------|---|---|---|---|
| PRACTICUM  | ······································ | 2 | 0 | 2 | 3 |

| ii) Thermostatic expansion valve ( 3 turn adjustment of superheat)                  |    |
|-------------------------------------------------------------------------------------|----|
| iii) Automatic expansion valve                                                      |    |
| 4. Conduct a performance test on a vapour compression refrigeration system          |    |
| using capillary tube/automatic expansion valve/thermostatic expansion valve and     |    |
| compare the result                                                                  |    |
| 5. Conduct a performance test on a given open type air-conditioning system and      |    |
| determine the cooling capacity and its c.o.p.                                       |    |
| 6. Set the winter comfort condition in the desired space using a recirculation type |    |
| air-conditioning system and also determine its cooling capacity.                    |    |
| 7. Set the summer comfort condition in the desired space using a recirculation      |    |
| type air-conditioning system and also determine its cooling capacity.               |    |
| ASSESSMENT TEST AND REVISION                                                        | 10 |
| TOTAL                                                                               | 60 |

#### Reference

- 1. Refrigeration and Air Conditioning Sadhu Singh, Khanna Book Publishing Co., New Delhi
- 2. Refrigeration and Air Conditioning S. Domkundwar, Dhanpat Rai publications.
- 3. Refrigeration and Air Conditioning A.S.Sarao & G.S. Gabi, 6th edition, Satya Prakashan publications, New Delhi, 2004.
- 4. Principles of Refrigeration Roy J.Dossat, 5th edition, Pearson Publications, 2001.
- 5. Refrigeration and Air Conditioning M.Zakria Baig, Premier/ Radiant Publishing House.
- 6. Refrigeration and Air Conditioning C.P Arora, Tata McGraw Hill Education, 2000.



#### Equipment required.

- 1. Cooling tower Kit.
- 2. Vapour compression refrigeration system Kit.
- 3. Open type air-conditioning system Kit.
- 4. Recirculation type air-conditioning system Kit.
- 5. Required measuring instruments and consumables.

#### END SEMESTER EXAMINATION QUESTION PATTERN – Theory Exam

#### Duration: 3 Hrs.

#### Max. Marks: 100

Note: Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

#### Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.



| 1020235334 | Value Engineering | L | Т | Ρ | С |
|------------|-------------------|---|---|---|---|
| PRACTICUM  |                   | 2 | 0 | 2 | 3 |

#### Introduction

Value engineering is a systematic, organized approach to providing necessary functions in a project at the lowest cost. Value engineering promotes the substitution of materials and methods with less expensive alternatives, without sacrificing functionality. It is focused solely on the functions of various components and materials, rather than their physical attributes.

#### **Course Objectives**

The objective of this course is to enable the student

- 1. To learn the value engineering methodology.
- 2. To learn how to manage value in projects.
- 3. To obtain industry-related experience in applying value engineering methods.

#### **Course Outcome**

After successful completion of this course, the students can able to

CO1: Explain the concepts, techniques and applications of value engineering

CO2: Describe job plan of value engineering.

CO3: Illustrate different value engineering techniques and versatility of value engineering.

CO4: Explain the efforts of value engineering team during the process of value engineering

CO5: Select suitable recent design tools and operating methods.

#### Prerequisites

Element of Machine Design, Re engineering, CAD/CAM, Quality Management.



| 1020235334 | Value Engineering | L | Т | Р | С |
|------------|-------------------|---|---|---|---|
| PRACTICUM  |                   | 2 | 0 | 2 | 3 |

# **CO-PO Mapping**

| C0/P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|-------|-----|-----|-----|-----|-----|-----|-----|
| C01   | 3   |     | 1   | -   | 1   |     |     |
| C02   | 3   |     | 1   | 1   | 1   |     |     |
| CO3   | 3   |     | 1   | 1   | 1   |     |     |
| CO4   | 3   |     | 1   | 1   | 1   |     |     |
| C05   | 3   |     | 1   |     | 1   |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

# Assessment Methodology:

|                       | Co                                           | ontinuous Asses                                  | sment (40 marks)                  |                                                  | End                                                        |
|-----------------------|----------------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------------|------------------------------------------------------------|
|                       | CA1                                          | CA2                                              | CA3                               | CA4                                              | Semester<br>Examination<br>(60 marks)                      |
| Mode                  | Written Test<br>Theory<br>(Any Two<br>Units) | Written Test<br>Theory<br>(Another Two<br>Units) | Practical Test<br>(All Exercises) | Written Test<br>(Complete<br>Theory<br>Portions) | Written<br>Examination<br>(Complete<br>Theory<br>Portions) |
| Duration              | 2 Periods                                    | 2 Periods                                        | 3 Hours                           | 3 Hours                                          | 3 Hours                                                    |
| Exam Marks            | 50                                           | 50                                               | 100                               | 100                                              | 100                                                        |
| Converted<br>to       | 10                                           | 10                                               | 15                                | 15                                               | 60                                                         |
| Marks                 | 10                                           |                                                  | 15                                | 15                                               | 60                                                         |
| Tentative<br>Schedule | 6th Week                                     | 12th Week                                        | 15th Week                         | 16th Week                                        |                                                            |



| 1020235334 | Value Engineering | L | Т | Ρ | С |
|------------|-------------------|---|---|---|---|
| PRACTICUM  |                   | 2 | 0 | 2 | 3 |

#### Note:

• CA1 and CA2: Assessment written test should be conducted for 50 Marks. The marks scored will be converted to 10 Marks for each test. Best of one will be considered for the internal assessment of 10 Marks.

CA1 and CA2, Assessment written test should be conducted for two units as below.

Answer any Five questions. (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions.

Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

 CA 3: All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one experiment by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded for 100 marks will be converted to 15 Marks for the internal mark.

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. Each exercise/experiment should be evaluated for 10 Marks. The total marks awarded should be converted to 30 Marks for the practical test as per the scheme of evaluation as below.

### The details of the practical documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be written in a separate notebook / printed manual / file. The reading and calculations and graph/ should be written by the student manually. The evaluated practical document should be submitted for the Practical Test (CA3). The mark scored by the students should be converted to 30 marks. The same should be included as per the allocation in the practical test.



| 1020235334 | Value Engineering | L | Т | Ρ | С |
|------------|-------------------|---|---|---|---|
| PRACTICUM  |                   | 2 | 0 | 2 | 3 |

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| SI.No. | Description                         | Marks |
|--------|-------------------------------------|-------|
|        |                                     |       |
| Α      | Aim / Description                   | 10    |
| В      | Procedure                           | 20    |
| С      | Presentation / Report               | 20    |
| D      | Result                              | 10    |
| E      | Practical document (All Practicals) | 30    |
| F      | Viva Voce                           | 10    |
|        | Total                               | 100   |

#### SCHEME OF EVALUATION - Practical Test

**CA4:** Model examination should be conducted for complete theory portions as per the end semester question pattern. The marks awarded should be converted to 15 marks for the internal assessment.

### **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.



| 1020235334 | Value Engineering | L | Т | Ρ | С |
|------------|-------------------|---|---|---|---|
| PRACTICUM  |                   | 2 | 0 | 2 | 3 |

# **Syllabus Contents**

| THEORY   |                                                                              |   |
|----------|------------------------------------------------------------------------------|---|
| Unit I   | INTRODUCTION OF VALUE ENGINEERING                                            |   |
| Value e  | engineering (VE), concepts, advantages, applications, problem recognition,   | 6 |
| and rol  | e in productivity, criteria for comparison, element of choice.               |   |
| Organiz  | zation: Level of value engineering in the organization, size and skill of VE |   |
| staff, s | mall plant, VE activity, unique and quantitative evaluation of ideas.        |   |
| Unit II  | VALUE ENGINEERING JOB PLAN                                                   |   |
| Introduc | tion, orientation, information phase, speculation phase, analysis phase.     | 6 |
| Selectio | n and Evaluation of value engineering Projects, Project selection, methods   |   |
| selectio | n, value standards, application of value engineering methodology             |   |
| Unit III | VALUE ENGINEERING TECHNIQUES                                                 | 1 |
| Selecti  | ng products and operation for value engineering action, value engineering    | 6 |
| progra   | mme, determining and evaluating function(s) assigning rupee equivalents,     |   |
| develo   | ping alternate means to required functions, Decision making for optimum      |   |
| alterna  | tive, use of decision matrix, queuing theory and Monte Carlo method make     |   |
| or buy,  | measuring profits, reporting results, Follow up, Use of advanced technique   |   |
| like Fur | nction Analysis System.                                                      |   |
| Unit IV  | VERSATILITY OF VALUE ENGINEERING                                             |   |
| Value    | engineering operation in maintenance and repair activities, value            | 6 |
| enginee  | ring in non-hardware projects. Initiating a value engineering programme:     |   |
| Introduc | ction, training plan, career development for value engineering specialties.  |   |
| Unit V   | VALUE ENGINEERING LEVEL OF EFFORT                                            |   |
| Value    | engineering team, co-coordinator, designer, different services, definitions, | 6 |
| constru  | uction management contracts, value engineering three case studies.           |   |


| 1020235334 | Value Engineering | L | Т | Ρ | С |
|------------|-------------------|---|---|---|---|
| PRACTICUM  |                   | 2 | 0 | 2 | 3 |

| Practical Exercises: Value engineering in mechanical engineering aims to optimize the | 20 |
|---------------------------------------------------------------------------------------|----|
| value of products or processes by improving their functionality, quality, and         |    |
| cost-effectiveness. Here are some practical exercises tailored for value engineering  |    |
| mechanical engineering:                                                               |    |

Exercise 1: Product Analysis and Cost Breakdown:

Exercise: Select a mechanical product or component (e.g., gearbox, pump, conveyor system) and conduct a detailed analysis of its design, materials, manufacturing processes, and associated costs.

Task students with identifying opportunities for cost reduction while maintaining or improving product performance and reliability.

Encourage students to create cost breakdowns and conduct comparative analyses with alternative materials, manufacturing methods, or design modifications.

Exercise 2: Function Analysis and Functional Decomposition:

Exercise: Choose a mechanical system or assembly and perform a functional analysis to identify its primary functions, sub-functions, and interrelationships.

Instruct students to decompose the system into its constituent functions and evaluate each function's importance in meeting user requirements.

Task students with brainstorming alternative design solutions or modifications that optimize functionality and eliminate unnecessary features or costs.

Exercise 3: Value Stream Mapping (VSM):

Exercise: Provide students with a manufacturing process map or workflow diagram for a mechanical component or assembly.

Guide students through the process of creating a value stream map to visualize material and information flow, process cycle times, and areas of waste or inefficiency.

Encourage students to identify opportunities for streamlining processes, reducing lead times, and eliminating non-value-added activities to enhance overall value.

Exercise 4: Design for Manufacturability (DFM) Analysis:

Exercise: Assign students a mechanical part or assembly and instruct them to perform a Design for Manufacturability (DFM) analysis.



| 1020235334 | Value Engineering | L | Т | Ρ | С |
|------------|-------------------|---|---|---|---|
| PRACTICUM  |                   | 2 | 0 | 2 | 3 |

Have students evaluate the design for factors such as ease of manufacturing, assembly, and serviceability, as well as opportunities for standardization and part consolidation.

Task students with proposing design modifications or optimizations that simplify manufacturing processes, reduce material waste, and lower production costs.

Exercise 5: Cost-Benefit Analysis and Trade-off Studies:

Exercise: Present students with a design scenario involving conflicting objectives, such as reducing product cost versus improving performance.

Guide students through conducting a cost-benefit analysis to quantify the financial impact of different design alternatives.

Encourage students to perform trade-off studies to assess the trade-offs between cost, performance, quality, and other key factors, ultimately identifying the most cost-effective solution.

Exercise 6: Supplier and Material Selection Optimization:

Exercise: Provide students with a list of potential suppliers and materials for a mechanical component or system.

Instruct students to evaluate supplier capabilities, material properties, lead times, and costs to identify the most suitable options.

Task students with negotiating with suppliers, exploring bulk purchasing discounts, and optimizing material selection to minimize procurement costs while ensuring quality and reliability.

Exercise 7: Life Cycle Cost Analysis (LCCA):

Exercise: Assign students a mechanical product or system and instruct them to perform a Lifecycle Cost Analysis (LCCA) considering all costs incurred throughout its lifecycle, including acquisition, operation, maintenance, and disposal.

Guide students through quantifying and comparing the total cost of ownership for different design alternatives, highlighting opportunities for long-term cost savings and value optimization.

Test + Revision 10 Total 60



## Suggested list of Students Activity

- 1. Check the web portal to study the material to identify the role and requirement of Value Engineering.
- Periodical quizzes should be conducted on a weekly/fortnightly basic to reinforce the use of Value Engineering.
- 3. Students might be asked to visit the mechanical heavy vehicle component manufacturing industry to find the value engineering implementation.

### **Reference Books**

- 1. Richard Park, "Value Engineering: A Plan for Invention", St. Lucie Press, 1999.
- 2. Del L. Younker, "Value Engineering analysis and methodology", Marcel Dekker Inc, New York, 2004.
- 3. Anil Kumar Mukhopadhyaya, "Value Engineering Mastermind: From concept toValue Engineering Certification", SAGE Publications, 2003
- 4. Anil Kumar Mukhopadhyaya, "Value Engineering: Concepts Techniques and applications", SAGE Publications 2010

### **END SEMESTER EXAMINATION QUESTION PATTERN – Theory Exam**

#### Duration: 3 Hrs.

#### Max. Marks: 100

Note: Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

### Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.



| 1020235335 | Green Manufacturing | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

#### Introduction

This course explores present manufacturing practices that produce products without much pollution. Green manufacturing refers to the regeneration of production methods and the establishment of ecologically sustainable businesses in the manufacturing industry. In simple terms, it is the "greening" of manufacturing, whereby employees recycle and reuse materials, cut down on waste and pollution, use less natural resources, and decrease emissions during production.

#### **Course Objectives**

The objective of this course is to prepare the student.

- To introduce the concept of green manufacturing
- To impart knowledge of pollution and measurement of carbon emissions.
- To become familiar with the recent developments in life cycle management.
- To acquire knowledge of selecting suitable materials, methods, and recycling to make green manufacturing

#### **Course Outcomes**

On successful completion of this course, the student will be able to,

CO1: Explain the importance of tools and Techniques used in green manufacturing CO2: Familiarize the causes of industrial air pollutants and methods to measure them in different environments.

CO3: Explain the causes and effects of sound and water pollution.

- CO4: Describe the recent developments in life cycle assessment and its implementation.
- CO5: Apply the concept of green manufacturing designs to suitable for an environment

### **Pre-requisites**

Knowledge of basic chemistry and metrology.



| 1020235335 | Green Manufacturing | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

## CO/PO Mapping

| CO / PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| CO1     | 3   |     |     |     | 1   | -   | 1   |
| CO2     | 3   |     |     |     | 1   | -   | 1   |
| CO3     | 3   |     |     |     | 1   | -   | 1   |
| CO4     | 3   |     |     |     | 1   | -   | 1   |
| CO5     | 3   |     |     |     | 1   | -   | 1   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

### Instructional Strategy

- It is advised that teachers take steps to pique pupils' attention and boost their curiosity to learn.
- Implement task-based learning activities where students work on specific tasks or projects.
- Incorporate technology tools and resources, such as online platforms, interactive multimedia, and virtual communication tools, to enhance engagement and provide additional practice opportunities.
- Incorporate formative and summative assessments to gauge student progress and provide targeted feedback.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- All demonstrations/Hand-on practices may be followed in the real environment as far as possible.



| 1020235335 | Green Manufacturing | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

### Assessment Methodology:

|              | Co           | ontinuous Asses | sment (40 marks) |              | End         |
|--------------|--------------|-----------------|------------------|--------------|-------------|
|              |              |                 |                  |              | Semester    |
|              | CA1          | CA2             | CA3              | CA4          | Examination |
|              |              |                 |                  |              | (60 marks)  |
|              | Written Test | Written Test    |                  | Written Test | Written     |
|              | Theory       | Theony          |                  | (Complete    | Examination |
|              |              | (Another Two    | Drastical Test   |              | (Complete   |
| Mode         |              |                 |                  | Theory       | Theory      |
|              | Units)       | Units)          | (All Exercises)  | Portions)    | Portions)   |
| Duration     | 2 Periods    | 2 Periods       | 3 Hours          | 3 Hours      | 3 Hours     |
| Exam Marks   | 50           | 50              | 100              | 100          | 100         |
| Converted to | 10           | 10              | 15               | 15           | 60          |
| Marks        | 10           |                 | 15               | 15           | 60          |
| Tentative    | 6th Week     | 12th Week       | 15th Week        | 16th Week    |             |
| Schedule     |              |                 |                  | TOUT WEEK    |             |

Note:

• CA1 and CA2: Assessment written test should be conducted for 50 Marks. The marks scored will be converted to 10 Marks for each test. Best of one will be considered for the internal assessment of 10 Marks.

CA1 and CA2, Assessment written test should be conducted for two units as below.

Answer any Five questions. (5 X 10 Marks = 50 Marks).

Eight questions will be asked; students should write Five questions.

Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.



| 1020235335 | Green Manufacturing | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

• **CA 3:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one experiment by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded for 100 marks will be converted to 15 Marks for the internal mark.

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. Each exercise/experiment should be evaluated for 10 Marks. The total marks awarded should be converted to 30 Marks for the practical test as per the scheme of evaluation as below.

The details of the practical documents to be prepared as per the instruction below. Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be written in a separate notebook or a printed manual or a file with documents. The reading and calculations and graph/ should be written by the student manually in the documents. The evaluated practical document should be submitted for the Practical Test (CA3). The mark scored by the students should be converted to 30 marks. The same should be included as per the allocation in the practical test.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.



# DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 2023 REGULATION

DME

| 1020235335 | Green Manufacturing | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

#### SCHEME OF EVALUATION - Practical Test

| SI.No. | Description                         | Marks |
|--------|-------------------------------------|-------|
| Α      | Aim / Description                   | 10    |
| В      | Procedure                           | 20    |
| С      | Presentation / Report               | 30    |
| D      | Practical document (All Practicals) | 30    |
| E      | Viva Voce                           | 10    |
|        | Total                               | 100   |

**CA4:** Model examination should be conducted for complete theory portions as per the end semester question pattern. The marks awarded should be converted to 15 marks for the internal assessment.

#### **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

#### Syllabus Contents.

| UNIT-I     | INTRODUCTION TO GREEN MANUFACTURING                                     |   |
|------------|-------------------------------------------------------------------------|---|
| THEORY:    |                                                                         | 6 |
| Green Ma   | anufacturing-Definition-History and evolution of green manufacturing.   |   |
| Factors af | fecting GM- Environmental Impact of Manufacturing, Strategies for Green |   |
| Manufactu  | iring.                                                                  |   |
| Tools & te | echniques required -Environmental Conscious, Design for Environment;    |   |
| Design for | r recycling, Eco friendly Product design methods- Environmental Impact  |   |
| assessme   | nt methods and Standards.                                               |   |



| 1020235335      | Green Manufacturing                                      | L         | Т         | Р      | С |  |
|-----------------|----------------------------------------------------------|-----------|-----------|--------|---|--|
| PRACTICUM 2 0 2 |                                                          |           |           |        |   |  |
|                 |                                                          |           |           |        |   |  |
| PRACTICAL       | .:                                                       |           |           |        | 3 |  |
| Exercise 1:     | Prepare a case study about implementation of gre         | een ma    | nufactu   | uring. |   |  |
| (The studen     | ts will have to identify smaller problems from indu      | ustries   | / resea   | rch /  |   |  |
| academic o      | rganizations pertaining to green manufacturing,          | analyze   | e and     | offer  |   |  |
| solutions to t  | he problems identified based on the knowledge acqu       | ired)     |           |        |   |  |
| UNIT-II I       | NDUSTRIAL AIR POLLUTANTS                                 |           |           |        |   |  |
| THEORY:         |                                                          |           |           |        | 6 |  |
| Pollutants-Pi   | rimary and Secondary Pollutants, Automobile Po           | ollutants | s, Indu   | strial |   |  |
| Pollution, A    | mbient air quality Standards, Metrological aspect        | s of a    | ir Pollu  | ution, |   |  |
| Temperature     | lapse Rates and Stability- wind velocity and             | Turbu     | lence-F   | 'ump   |   |  |
| behavior dis    | persion of air Pollutants.                               |           |           |        |   |  |
| Measuremer      | nt of air Pollution-Air pollution sampling-collectio     | n of g    | gaseou    | s air  |   |  |
| pollutants-co   | llection of particulate pollutants-stock sampling, analy | ysis of a | air       |        |   |  |
| pollutants-su   | lfur dioxide-nitrogen dioxide, carbon monoxide, oxida    | ints and  | d ozone   | ÷.     |   |  |
| PRACTICAL       |                                                          |           |           |        | 2 |  |
| Exercise 2:     | Determination of CO and CO2 and unburn                   | ned hy    | /drocar   | bons   |   |  |
| concentratio    | n in IC Engine Exhaust.                                  |           |           |        |   |  |
| UNIT-III N      | NOISE & WATER POLLUTION IN INDUSTRIES8                   |           |           |        |   |  |
| THEORY:         |                                                          |           |           |        | 6 |  |
| Noise pollut    | ion in Industries- Frequency and Sound Levels-           | Effect    | of hu     | man,   |   |  |
| Environment     | and properties, Natural and Androgenic Noise             | Sources   | s-Meas    | uring  |   |  |
| Instruments     | for frequency and Noise levels- Masking of sound.        |           |           |        |   |  |
| Water Pollu     | ition-Major pollutants of Water- Contaminants in         | n wate    | er, Nitr  | ates,  |   |  |
| Fluorides, D    | etergents, taste and odour, Radioactivity in water- C    | criteria, | for diffe | erent  |   |  |
| impurities in   | water- Water Quality requirement for industry Use        | es-Mea    | sureme    | nt of  |   |  |
| water pollution | on.                                                      |           |           |        |   |  |
|                 |                                                          |           |           |        |   |  |



| 1020235335 | Green Manufacturing | L | Т | Р | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

### PRACTICAL:

**Exercise 3:** To estimate Total Dissolved Solids (DO)and PH value of water supplied to the heat exchanger of any machine.

**Exercise 4:** Determination of hardness (temporary, permanent and total) of domestic and industrial waters.

**Exercise 5:** Experiment on Industrial noise measurement in any production laboratory.

**Exercise 6:** Free and forced vibration measurement on simple cantilever beams / Machine members.

# UNIT-IV LIFE CYCLE ASSESSMENT

#### THEORY:

Life cycle assessment - Principles of Life cycle assessment; Product Life Cycle Assessment -Triple bottom line approach; Industrial Ecology- Ecological footprinting - Future role of LCA - measurement techniques and reporting.

Clean Energy Supply - Green Manufacturing through Clean Energy Supply - Clean Energy Technologies, Application - Potential of Clean Energy.

Characteristics of Green manufacturing processes - Energy efficiency analysis of green manufacturing processes - Sustainability analysis and Scope of green manufacturing centers.

# PRACTICAL:

**Exercise 7:** Estimate the Energy requirement of any production machines.

**Exercise 8:** Machining under different cooling strategy and estimate the Coolant life management.



# DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 2023 REGULATION

DME

8

6

4

| 1020235335                                                                              | Green Manufacturing                                 | L        | Т      | Р      | С  |  |  |  |  |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------|----------|--------|--------|----|--|--|--|--|
| PRACTICUM                                                                               |                                                     | 2        | 0      | 2      | 3  |  |  |  |  |
|                                                                                         |                                                     |          |        |        |    |  |  |  |  |
| UNIT-V ENVIRONMENTAL EFFECT OF GREEN MANUFACTURING DESIGN                               |                                                     |          |        |        |    |  |  |  |  |
| THEORY:                                                                                 |                                                     |          |        |        | 6  |  |  |  |  |
| Green Manu                                                                              | acturing Assessment -Concept Models and Va          | rious A  | pproac | hes,   |    |  |  |  |  |
| Product Susta                                                                           | inability and Risk/Benefit assessment; Corporate So | cial Res | ponsib | ility. |    |  |  |  |  |
| Environmental effects of design -Selection of natural friendly material - Eco design    |                                                     |          |        |        |    |  |  |  |  |
| - Environmental Damage- Material flow and cycles – Material recycling – Emission        |                                                     |          |        |        |    |  |  |  |  |
| less manufacturing- Reduction of toxic emission – design for recycle.                   |                                                     |          |        |        |    |  |  |  |  |
| PRACTICAL:                                                                              |                                                     |          |        |        |    |  |  |  |  |
| <b>Exercise 9:</b> Estimate the power consumption of spindle and feed drive units power |                                                     |          |        |        |    |  |  |  |  |
| measurement in center lathe / CNC turning or milling machine. (Consider a typical       |                                                     |          |        |        |    |  |  |  |  |
| component and record the power using power sensor under different operation             |                                                     |          |        |        |    |  |  |  |  |
| conditions and evaluate the energy consumption and efficiency of the process)           |                                                     |          |        |        |    |  |  |  |  |
|                                                                                         | Test + I                                            | Revisio  | า      |        | 10 |  |  |  |  |
|                                                                                         | Тс                                                  | otal     |        |        | 60 |  |  |  |  |

### Suggested List of Students Activity

- The students will have to identify a larger problem from industries/research/academic organizations pertaining to green manufacturing, analyze it, and offer solutions to the problems identified based on the knowledge acquired.
- The students have to create a graphical diagram that shows the environmental challenges in the manufacturing shop or laboratory tool room. Suggest the remedial measure.
- Students must keep track of the percentage of air pollutants in the classroom. Create a comparison chart for a month.

### Reference

- Gradel.T.E. and B.R. Allenby Industrial Ecology Prentice Hall 2010
- World Commission on Environment and Development (WCED), Our Common Future, Oxford University Press 2005.



| 1020235335 | Green Manufacturing | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

- Rao M.N. and Dutta A.K. "Wastewater treatment", Oxford & IBH publishing Co. Pvt. Ltd., New Delhi, Second Edition, 2006
- Rao CS Environmental Pollution Control Engineering-, Wiley Eastern Ltd., New Delhi, 2006.
- Canter, R.L., "Environmental Impact Assessment", McGraw Hill Inc., New Delhi, 1996.
- Shukla, S.K. And Srivastava, P.R., "Concepts In Environmental Impact Analysis", Common Wealth Publishers, New Delhi, 1992.

# Web-based/Online Resources

- https://www.epa.gov/green-engineering/about-green-engineering
- https://ceat.okstate.edu/che/site\_files/docs/david-t-allen.pdf
- Green engineering principles and applications, DOI:10.13140/RG.2.2.19639.65449
- https://www.vssut.ac.in/lecture\_notes/lecture1424353637.pdf
- https://joycelau99.wordpress.com/wp-content/uploads/2020/10/introduction-to-environmenta l-engineering.pdf
- https://nptel.ac.in/courses/112104225
- https://archive.nptel.ac.in/courses/110/104/110104119
- https://www.youtube.com/watch?v=CsqECIHQBCI&list=PLx3rZEiwFTIO\_2\_STJGSsq9Mya7kjQVCy
- https://www.youtube.com/watch?v=Ri9rcXxcKdA



| 1020235335 | Green Manufacturing | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 2 | 0 | 2 | 3 |

### Instruments/Facilities required to conduct the practical sessions

| SI.No | Equipment/ Instruments required                                | Quantity |
|-------|----------------------------------------------------------------|----------|
|       |                                                                | Required |
| 1     | Sound level Meter(SLM)/ Integrating Sound Level Meter(ISLM)    | 01       |
| 2     | CO <sub>2</sub> Meter                                          | 01       |
| 3     | CO Meter                                                       | 01       |
| 4     | pH meter                                                       | 01       |
| 5     | TDS meter                                                      | 01       |
| 6     | Energy meter                                                   | 01       |
| 7     | Vibration meter                                                | 01       |
| 8     | Water hardness test kit                                        | 01       |
| 9     | Other metrology instruments(Vernier calliper, thermometer etc) | As reqd  |

### END SEMESTER EXAMINATION QUESTION PATTERN – Theory Exam

#### Duration: 3 Hrs.

#### Max. Marks: 100

Note: Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

### Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.



| 1020235336 | Lean Manufacturing | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICUM  |                    | 2 | 0 | 2 | 3 |

### Introduction

Lean Manufacturing is a systematic approach to minimizing waste within a manufacturing system while simultaneously maximizing productivity. Originating from the Toyota Production System (TPS), lean manufacturing principles focus on creating more value for customers with fewer resources.

At its core, lean manufacturing aims to streamline production processes, reduce costs, and improve quality by eliminating non-value-added activities. This is achieved through various techniques and tools that emphasize continuous improvement, such as 5S (Sort, Set in order, Shine, Standardize, Sustain), Kaizen (continuous improvement), Value Stream Mapping, and Just-In-Time (JIT) production.

For diploma engineering students, learning about lean manufacturing provides essential skills and knowledge to optimize production processes, enhance operational efficiency, and contribute to the overall competitiveness of a manufacturing enterprise. By understanding and applying lean principles, students can play a pivotal role in transforming traditional manufacturing setups into more agile, responsive, and waste-free operations.

#### **Course Objectives**

It is desired that at the end of the course, the student will be equipped with the basic knowledge of lean manufacturing, tools, techniques and implementation outcomes.

#### **Course Outcomes**

On successful completion of this course, the student will be able to,

CO1: Explain the importance of tools used in lean manufacturing.

CO2: Explain the importance of tools and technique of TQM.

CO3: Understand the objective and functions of TPM.

CO4: Describe the Design of Experiments, Designing for Quality, and Quality in Service Sectors.

CO5: Apply the concept of six sigma and quality circle.



| 1020235336 | Lean Manufacturing | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICUM  | g                  | 2 | 0 | 2 | 3 |

## CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   |     |     |     | 1   | -   | 1   |
| C02     | 3   |     |     |     | 1   | -   | 1   |
| C03     | 3   |     |     |     | 1   | -   | 1   |
| C04     | 3   |     |     |     | 1   | -   | 1   |
| C05     | 3   |     |     |     | 1   | -   | 1   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy

- It is advised that teachers take steps to pique pupils' attention and boost their curiosity to learn.
- Implement task-based learning activities where students work on specific tasks or projects.
- Incorporate technology tools and resources, such as online platforms, interactive multimedia, and virtual communication tools, to enhance engagement and provide additional practice opportunities.
- Incorporate formative and summative assessments to gauge student progress and provide targeted feedback.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- All demonstrations/Hand-on practices may be followed in the real environment as far as possible.



| 1020235336 | Lean Manufacturing | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICUM  |                    | 2 | 0 | 2 | 3 |

### Assessment Methodology:

|            | Co           | ontinuous Asses | sment (40 marks) | )            | End         |
|------------|--------------|-----------------|------------------|--------------|-------------|
|            |              |                 |                  |              | Semester    |
|            | CA1          | CA2             | CA3              | CA4          | Examination |
|            |              |                 |                  |              | (60 marks)  |
|            | Written Test | Written Test    |                  | Written Test | Written     |
|            | Theory       | Theory          | Practical Test   | (Complete    | Examination |
| Mode       | (Any Two     | (Another Two    |                  | Theory       | (Complete   |
|            |              |                 |                  | Dortiona     | Theory      |
|            | Units)       | Units)          |                  | Portions)    | Portions)   |
| Duration   | 2 Periods    | 2 Periods       | 3 Hours          | 3 Hours      | 3 Hours     |
| Exam Marks | 50           | 50              | 100              | 100          | 100         |
| Converted  | 10           | 10              | 15               | 15           | 60          |
| to         | 10           | 10              | 15               | 15           |             |
| Marks      | 10           | 10              |                  | 15           | 60          |
| Tentative  | 6th Week     | 12th Week       | 15th Week        | 16th Week    |             |
| Schedule   |              |                 |                  |              |             |

Note:

• CA1 and CA2: Assessment written test should be conducted for 50 Marks. The marks scored will be converted to 10 Marks for each test. Best of one will be considered for the internal assessment of 10 Marks.

CA1 and CA2, Assessment written test should be conducted for two units as below.

Answer any Five questions. (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions.

Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

• **CA 3:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one experiment by lot for the test. The



| 1020235336 | Lean Manufacturing | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICUM  | g                  | 2 | 0 | 2 | 3 |

practical test should be conducted as per the scheme of evaluation as below. The marks awarded for 100 marks will be converted to 15 Marks for the internal mark.

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. Each exercise/experiment should be evaluated for 10 Marks. The total marks awarded should be converted to 30 Marks for the practical test as per the scheme of evaluation as below.

### The details of the practical documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The Procedure, steps, observations and report should be written by the student manually in the documents. The evaluated practical document should be submitted for the Practical Test (CA3). The mark scored by the students should be converted to 30 marks. The same should be included as per the allocation in the practical test.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| SI.No. | Description                         | Marks |
|--------|-------------------------------------|-------|
| А      | Aim / Description                   | 10    |
| В      | Procedure / Steps                   | 20    |
| С      | Presentation / Report               | 30    |
| E      | Practical document (All Practicals) | 30    |
| F      | Viva Voce                           | 10    |
|        | Total                               | 100   |

### **SCHEME OF EVALUATION - Practical Test**



| 1020235336 | Lean Manufacturing | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICUM  |                    | 2 | 0 | 2 | 3 |

**CA4:** Model examination should be conducted for complete theory portions as per the end semester question pattern. The marks awarded should be converted to 15 marks for the internal assessment.

## **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

# Syllabus Contents.

| UNIT I                                                                             | Introduction                                                             |   |  |  |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---|--|--|
| Lean Mar                                                                           | nufacturing: Introduction, Definitions of Lean manufacturing, explaining | 6 |  |  |
| basic con                                                                          | cepts. Overview of historical development. Management theory.            |   |  |  |
| Primary Tools of Lean manufacturing: 5-S, Workplace organization, Total Productive |                                                                          |   |  |  |
| Maintenar                                                                          | nce, Process mapping - Value stream mapping, Work cell.                  |   |  |  |
| Secondary                                                                          | / Tools of Lean manufacturing: Objective and benefits of Secondary lean  |   |  |  |
| tool, Cause and Effect diagram, Pareto chart, Spider chart, Poka yoke, Kanban,     |                                                                          |   |  |  |
| Automation, Single minute exchange of die (SMED), Design for manufacturing and     |                                                                          |   |  |  |
| assembly,                                                                          | Just in time (JIT), Visual workplace, OEE.                               |   |  |  |
| UNIT II                                                                            | Total Quality Management                                                 |   |  |  |
| TQM Too                                                                            | ols And Techniques: The seven traditional tools of quality, New          | 6 |  |  |
| managem                                                                            | ent tools, and Six sigma: Concepts, methodology, applications to         |   |  |  |
| manufacturing, service sector including IT, Benchmarking, Reason to bench mark,    |                                                                          |   |  |  |
| Benchmarking process, FMEA, Stages, and Types. Quality circles , Quality Function  |                                                                          |   |  |  |
| Deployme                                                                           | nt (QFD), Taguchi quality loss function, TPM ,Concepts, improvement      |   |  |  |
| needs, Co                                                                          | st of Quality , Performance measures.                                    |   |  |  |



| 1020235336 | Lean Manufacturing | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICUM  | g                  | 2 | 0 | 2 | 3 |

| UNIT III                                                                                    | Total Productive Management                                                |   |  |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---|--|--|
| Total Pro                                                                                   | oductive Maintenance: Objectives and functions, Tero technology,           | 6 |  |  |
| Reliability                                                                                 | Centered Maintenance (RCM), maintainability prediction, availability and   |   |  |  |
| system e                                                                                    | ffectiveness, maintenance costs, maintenance organization. Minimal         |   |  |  |
| repair, maintenance types, balancing PM and breakdown maintenance, Primary                  |                                                                            |   |  |  |
| and secor                                                                                   | ndary tool for TPM, Case studies related to TPM.                           |   |  |  |
| UNIT IV                                                                                     | Design of Experiments, Designing for Quality, Quality in Service Sectors.  |   |  |  |
| Design o                                                                                    | f Experiments: Introduction , Methods, Taguchi approach, Achieving         | 6 |  |  |
| robust des                                                                                  | sign, Steps in experimental design                                         |   |  |  |
| Designing                                                                                   | for Quality: Introduction to Concurrent Engineering, Quality Function      |   |  |  |
| Deployme                                                                                    | nt (QFD) and Failure Mode and Effect Analysis (FMEA), Concept,             |   |  |  |
| Methodol                                                                                    | ogy and Application (with case studies).                                   |   |  |  |
| Quality in                                                                                  | Service Sectors: Characteristics of Service Sectors, Quality Dimensions    |   |  |  |
| in Service                                                                                  | Sectors, Measuring Quality in Different Service Sectors.                   |   |  |  |
| UNIT V                                                                                      | Six Sigma, Quality Circle.                                                 |   |  |  |
| Six Sigma                                                                                   | : Meaning of six sigma, Why six sigma, Six sigma improvement model,        | 6 |  |  |
| DMAIC ar                                                                                    | nd DMADV principle, , building six sigma organization and culture, Six     |   |  |  |
| sigma app                                                                                   | plication.                                                                 |   |  |  |
| Quality C                                                                                   | ircle: Quality Circle structure, Its operation, Characteristics of Quality |   |  |  |
| Circle, developing quality circle in organization, Basic problem solving techniques.        |                                                                            |   |  |  |
| PRACTICAL EXERCISES                                                                         |                                                                            |   |  |  |
| Exercise 7                                                                                  | Conduct a 5S audit in a specific area of the plant. Create a checklist for |   |  |  |
| each of the 5S steps and evaluate and implement improvements.                               |                                                                            |   |  |  |
| <b>Exercise 2</b> : Create a preventive maintenance plan for a critical piece of equipment. |                                                                            |   |  |  |
| Documen                                                                                     | t the steps, schedule the maintenance tasks, and assign responsibilities   |   |  |  |
| to mainter                                                                                  | nance personnel.                                                           |   |  |  |



| 1                                                                                      | 020235336                                     | Lean Manufacturing                                   | L        | Т       | Ρ     | С |
|----------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|----------|---------|-------|---|
| Ρ                                                                                      | RACTICUM                                      |                                                      | 2        | 0       | 2     | 3 |
|                                                                                        |                                               |                                                      |          |         |       |   |
|                                                                                        | Exercise 3:                                   | Identify a recurring equipment issue and organize    | a Kaiz   | en evei | nt to |   |
|                                                                                        | address it.                                   | Use root cause analysis to identify the underly      | ying pr  | oblem   | and   |   |
|                                                                                        | implement a                                   | solution using the PDCA cycle.                       |          |         |       |   |
|                                                                                        | Exercise 4: (                                 | Create an SOP for a routine maintenance task.        |          |         |       |   |
| <b>Exercise 5</b> : Root Cause Analysis with 5 Whys. Identify a specific issue and ask |                                               |                                                      |          |         |       |   |
| "Why?" it occurred. Continue asking "Why?" for each answer until the root cause is     |                                               |                                                      |          |         |       |   |
|                                                                                        | identified (ty                                | pically five times). Document the process and soluti | ons to a | address | s the |   |
|                                                                                        | root cause.                                   |                                                      |          |         |       |   |
|                                                                                        | Exercise 6:                                   | Pareto Chart Creation. Use the data collected on c   | lefects  | to crea | ate a |   |
| Pareto chart. List the types of defects in descending order of frequency and plot      |                                               |                                                      |          |         |       |   |
| the cumulative percentage. Identify the top 20% of defects that cause 80% of the       |                                               |                                                      |          |         |       |   |
|                                                                                        | problems and prioritize them for improvement. |                                                      |          |         |       |   |
|                                                                                        | ASSESSMENT TEST AND REVISION                  |                                                      |          |         |       |   |
|                                                                                        | Total                                         |                                                      |          |         |       |   |

### Reference

- 1. J Evans and W Linsay, The Management and Control of Quality, 6'th Edition, Thomson, 2005.
- 2. Besterfield, D H et al., "Total Quality Management", 3rd Edition, Pearson Education, 2008.
- 3. D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 6th Edition, 2004.
- 4. K C Jain and A K Chitale , "Quality Assurance and Total Quality Management (ISO 9000, QS 9000 ISO 14000)" by, Khanna Publishers.
- 5. B. L. Hanson & P. M. Ghare, "Quality Control & Application", Prentice Hall of India.



## END SEMESTER EXAMINATION QUESTION PATTERN – Theory Exam

#### Duration: 3 Hrs.

#### Max. Marks: 100

Note: Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

#### Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

### Introduction:

To meet out Globalization, technological advances and to sustain, we have to explore the knowledge about machine tools covering the various operations and Maintenance skill sets required for the development of a nation and its people.

#### **Course Objectives:**

- 1. To enable the student to understand the principles, functions and practices adopted in industry for the successful management of maintenance activities.
- 2. To explain different maintenance categories like preventive maintenance, condition monitoring and repair of machine tool.
- 3. To illustrate some of the simple instruments used for condition monitoring in industry.
- 4. To Understand the Repairs procedure and Service methods followed in the Industry.

#### **Course Outcomes**

On successful completion of this course, the student will be able to,

CO1: Describe about Maintenance principles, types of Maintenance and Maintenance planning.

CO2 : Explain the Maintenance Economics and Maintenance organization.

CO3 : Demonstrate the necessary skills for fixing and testing of different components and drives used in the Industry

CO4 : Explain the Repairs and service methodology followed in the Industry

CO5 : Demonstrate the necessary skills for Repairing and servicing of different Machine Tools used in the Industry

#### **Pre-requisites:**

Applied science, Basic workshop practice, Manufacturing Process, Machine Tool theory.



| 1020235440 | MAINTENANCE. REPAIR AND SERVICE | L | Т | Ρ | С |
|------------|---------------------------------|---|---|---|---|
| PRACTICUM  |                                 | 1 | 0 | 4 | 3 |

## CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 1   |     | 1   | 3   | 1   |     |     |
| C02     | 1   |     | 1   | 3   | -   |     |     |
| C03     | 1   |     | 1   | 3   | 1   |     |     |
| C04     | 1   |     | 1   | 3   | -   |     |     |
| C05     | 1   |     | 1   | 3   | 1   |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyse potential sources of error in case of discrepancies



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

#### **Assessment Methodology:**

|                       | Co                   | ontinuous Asses       | sment (40 mark         | (s)               | End                                   |
|-----------------------|----------------------|-----------------------|------------------------|-------------------|---------------------------------------|
|                       | CA1                  | CA2                   | CA3                    | CA4               | Semester<br>Examination<br>(60 marks) |
| Mode                  | Practical Test       | Practical<br>Test     | Written Test<br>Theory | Practical<br>Test | Practical<br>Examination              |
| Portion               | Cycle I<br>Exercises | Cycle II<br>Exercises | All Units              | All Exercises     | All Exercises                         |
| Duration              | 2 Periods            | 2 Periods             | 3 Hours                | 3 Hours           | 3 hours                               |
| Exam Marks            | 60                   | 60                    | 100                    | 100               | 100                                   |
| Converted to<br>Marks | 10                   | 10                    | 15                     | 15                | 60                                    |
| Marks                 | 1                    | 0                     | 15                     | 15                | 60                                    |
| Tentative<br>Schedule | 7th Week             | 14th Week             | 15th Week              | 16th Week         |                                       |

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every exercise / experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.



## The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next exercise.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The procedure and sketch should be written by the student manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| PART | DESCRIPTION                                  | MARKS |
|------|----------------------------------------------|-------|
| Α    | Aim & Tools required                         | 10    |
| В    | Procedure / Sketch / Setting / Tool Handling | 20    |
| С    | Alignment test / Dismantling / Assembling    | 20    |
|      | TOTAL                                        | 50    |
| D    | Practical Documents (As per the portions)    | 10    |
|      |                                              | 60    |

### SCHEME OF EVALUATION

Cycle I: 1, 2, 3, 4 and 5.

Cycle II: 6, 7, 8, 9 and 10.

• **CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



| 1020235440 | MAINTENANCE, REPAIR AND SERVICE | L | Т | Ρ | С |
|------------|---------------------------------|---|---|---|---|
| PRACTICUM  |                                 | 1 | 0 | 4 | 3 |

# **Question pattern – Written Test Theory**

|          | Description                               | Marks        |          |  |
|----------|-------------------------------------------|--------------|----------|--|
| Part – A | 30 MCQ from the complete theory portions. | 30 X 1 Mark  | 30 Marks |  |
| Part – B | Seven Questions to be answered out of 10  | 7 X 10 Marks | 70 Marks |  |
|          | Questions.                                |              |          |  |
|          | 100 Marks                                 |              |          |  |

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

#### **Syllabus Contents**

| Theory Portion                                                                 |   |  |  |
|--------------------------------------------------------------------------------|---|--|--|
| Unit I: Maintenance: Basic principles of maintenance planning - Importance of  | 8 |  |  |
| Maintenance - objectives and principles of planned maintenance activity -      |   |  |  |
| importance and benefits of sound maintenance systems – Reliability and machine |   |  |  |
| availability - MTBF, MTTR and MWT - Factors of availability - Maintenance      |   |  |  |
| organization. Maintenance – Types – Preventive, Breakdown, Scheduled –         |   |  |  |
| Comparison – Maintenance Schedule – Maintenance Economics – Condition          |   |  |  |
| Monitoring – Cost Comparison – With and Without condition monitoring –         |   |  |  |
| Introduction to TPM – TPM Pillars                                              |   |  |  |
| Practical Exercises                                                            |   |  |  |
| 1. Testing of Lathe machine alignments and prepare a test chart.               | 4 |  |  |
| a) Level of lathe.                                                             | ĺ |  |  |
| b) True running of spindle.                                                    | ĺ |  |  |
| c) Alignment of both centres.                                                  |   |  |  |
| d) Parallelism of main spindle to saddle movements                             |   |  |  |



# 1020235440

PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

| <ul> <li>a) Level of the Drilling machine.</li> <li>b) True running of Spindle Taper.</li> <li>c) Squareness of Spindle axis with Table</li> <li>3. Dismantle and assemble the tailstock of the lathe. Identify the troubles and mention the corrective measures.</li> <li>4. Dismantle and assemble of D C Motor. Identify the troubles and mention the corrective measures.</li> <li>5. Dismantle and assemble the Hydraulic cylinder. Identify the troubles and mention the corrective measures.</li> <li>6. Dismantling and assembly of Directional control valve. Identify the troubles and mention the corrective measures.</li> <li>Theory Portion</li> <li>Unit II : Repair and Service: 7</li> <li>Repair methods of the machine components - Failure analysis - Logical fault location - Sequential fault location - Equipment records - Job order system - Use</li> </ul> | 2. Testing of Pillar type drilling machine alignments and prepare a test chart. 4                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| b) True running of Spindle Taper.       .         c) Squareness of Spindle axis with Table       .         3. Dismantle and assemble the tailstock of the lathe. Identify the troubles and mention the corrective measures.       .         4. Dismantle and assemble of D C Motor. Identify the troubles and mention the corrective measures.       .         5. Dismantle and assemble the Hydraulic cylinder. Identify the troubles and mention the corrective measures.       .         6. Dismantling and assembly of Directional control valve. Identify the troubles and mention the corrective measures.       . <b>Unit II : Repair and Service:</b> 7       Repair methods of the machine components - Failure analysis - Logical fault         location - Sequential fault location - Equipment records - Job order system - Use       .                                  | a) Level of the Drilling machine.                                                                                                    |
| <ul> <li>c) Squareness of Spindle axis with Table</li> <li>3. Dismantle and assemble the tailstock of the lathe. Identify the troubles and mention the corrective measures.</li> <li>4. Dismantle and assemble of D C Motor. Identify the troubles and mention the corrective measures.</li> <li>5. Dismantle and assemble the Hydraulic cylinder. Identify the troubles and mention the corrective measures.</li> <li>6. Dismantling and assembly of Directional control valve. Identify the troubles and mention the corrective measures.</li> <li>Theory Portion</li> <li>Unit II : Repair and Service: 7</li> <li>Repair methods of the machine components - Failure analysis - Logical fault location - Sequential fault location - Equipment records - Job order system - Use</li> </ul>                                                                                       | b) True running of Spindle Taper.                                                                                                    |
| <ul> <li>3. Dismantle and assemble the tailstock of the lathe. Identify the troubles and mention the corrective measures.</li> <li>4. Dismantle and assemble of D C Motor. Identify the troubles and mention the corrective measures.</li> <li>5. Dismantle and assemble the Hydraulic cylinder. Identify the troubles and mention the corrective measures.</li> <li>6. Dismantling and assembly of Directional control valve. Identify the troubles and mention the corrective measures.</li> <li>7</li> <li>Theory Portion</li> <li>7</li> <li>Repair methods of the machine components - Failure analysis - Logical fault location - Sequential fault location - Equipment records - Job order system - Use</li> </ul>                                                                                                                                                            | c) Squareness of Spindle axis with Table                                                                                             |
| mention the corrective measures.       4         4. Dismantle and assemble of D C Motor. Identify the troubles and mention the corrective measures.       4         5. Dismantle and assemble the Hydraulic cylinder. Identify the troubles and mention the corrective measures.       4         6. Dismantling and assembly of Directional control valve. Identify the troubles and mention the corrective measures.       4         Theory Portion         Unit II : Repair and Service:         7       Repair methods of the machine components - Failure analysis - Logical fault         location - Sequential fault location - Equipment records - Job order system - Use       4                                                                                                                                                                                             | 3. Dismantle and assemble the tailstock of the lathe. Identify the troubles and 4                                                    |
| <ul> <li>4. Dismantle and assemble of D C Motor. Identify the troubles and mention the corrective measures.</li> <li>5. Dismantle and assemble the Hydraulic cylinder. Identify the troubles and mention the corrective measures.</li> <li>6. Dismantling and assembly of Directional control valve. Identify the troubles and mention the corrective measures.</li> <li>7 Theory Portion</li> <li>7 Repair methods of the machine components - Failure analysis - Logical fault location - Sequential fault location - Equipment records - Job order system - Use</li> </ul>                                                                                                                                                                                                                                                                                                        | mention the corrective measures.                                                                                                     |
| corrective measures.       4         5. Dismantle and assemble the Hydraulic cylinder. Identify the troubles and 4       4         mention the corrective measures.       4         6. Dismantling and assembly of Directional control valve. Identify the troubles and mention the corrective measures.       4         Theory Portion         Unit II : Repair and Service:         7       Repair methods of the machine components - Failure analysis - Logical fault         location - Sequential fault location - Equipment records - Job order system - Use                                                                                                                                                                                                                                                                                                                  | 4. Dismantle and assemble of D C Motor. Identify the troubles and mention the                                                        |
| <ul> <li>5. Dismantle and assemble the Hydraulic cylinder. Identify the troubles and mention the corrective measures.</li> <li>6. Dismantling and assembly of Directional control valve. Identify the troubles and mention the corrective measures.</li> <li>7 Theory Portion</li> <li>7 Repair methods of the machine components - Failure analysis - Logical fault location - Sequential fault location - Equipment records - Job order system - Use</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                    | corrective measures.                                                                                                                 |
| mention the corrective measures.       6.         Dismantling and assembly of Directional control valve. Identify the troubles and mention the corrective measures.       4         Theory Portion         Unit II : Repair and Service:         7       Repair methods of the machine components - Failure analysis - Logical fault         location - Sequential fault location - Equipment records - Job order system - Use                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5. Dismantle and assemble the Hydraulic cylinder. Identify the troubles and 4                                                        |
| 6. Dismantling and assembly of Directional control valve. Identify the troubles and mention the corrective measures.       4         Theory Portion         Unit II : Repair and Service:         7       Repair methods of the machine components - Failure analysis - Logical fault location - Sequential fault location - Equipment records - Job order system - Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mention the corrective measures.                                                                                                     |
| and mention the corrective measures.         Theory Portion         Unit II : Repair and Service:       7         Repair methods of the machine components - Failure analysis - Logical fault       7         location - Sequential fault location - Equipment records - Job order system - Use       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6. Dismantling and assembly of Directional control valve. Identify the troubles 4                                                    |
| Theory Portion       7         Unit II : Repair and Service:       7         Repair methods of the machine components - Failure analysis - Logical fault       7         location - Sequential fault location - Equipment records - Job order system - Use       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and mention the corrective measures.                                                                                                 |
| Unit II : Repair and Service:       7         Repair methods of the machine components - Failure analysis - Logical fault       7         location - Sequential fault location - Equipment records - Job order system - Use       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | heory Portion                                                                                                                        |
| Repair methods of the machine components - Failure analysis - Logical fault<br>location – Sequential fault location – Equipment records – Job order system – Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nit II : Repair and Service: 7                                                                                                       |
| location – Sequential fault location – Equipment records – Job order system – Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | epair methods of the machine components - Failure analysis - Logical fault                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ocation – Sequential fault location – Equipment records – Job order system – Use                                                     |
| of computers in maintenance – Repair cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f computers in maintenance – Repair cycle.                                                                                           |
| Transmission systems - Belt drive - chain drive - gear drive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ransmission systems - Belt drive - chain drive - gear drive.                                                                         |
| Tools required for the installation and maintenance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ools required for the installation and maintenance.                                                                                  |
| Practical Exercises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ractical Exercises                                                                                                                   |
| 7. Bearing: Inspection, Removal, Cleaning, Iubrication and refitting of bearings. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7. Bearing: Inspection, Removal, Cleaning, Iubrication and refitting of bearings. 4                                                  |
| Dismantie and assemble the bearing from a shart assembly unit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dismantie and assemble the bearing normal shart assembly unit.                                                                       |
| 8. Couplings: Maintenance, Repair and replacement and alignment of shaft. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8. Couplings: Maintenance, Repair and replacement and alignment of shaft. 4                                                          |
| Installation and alignment of driving and driven shafts using Plummer block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Installation and alignment of driving and driven sharts using Plummer block                                                          |
| Dearings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dearings.                                                                                                                            |
| 9. Beits: Mounting of beits and checking of slip. Installation of beit drives using 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9. Beits: Mounting of beits and checking of slip. Installation of beit drives using 4<br>Motor V belt and driving and driven pulley. |
| 10. Chain driver Tighten and replace the chain Installation of chain drives using 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10. Chain driver Tighten and replace the shein. Installation of shein drives using 4                                                 |
| To. Chain drive. Fighten and replace the chain. Installation of chain drives using 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | To. Chain drive. Fighten and replace the chain. Installation of chain drives using 4                                                 |
| 11. Coord drives : (i) Checking of correct meching (ii) Checking of wear of teeth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11. Coor drives : (i) Checking of correct maching (ii) Checking of wear of teeth                                                     |
| (iii) Checking of creck / domogo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (iii) Checking of creek ( demoge                                                                                                     |
| (iii) Checking Of Clack / Udinage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (III) Checking Of CldCk / Udifidge.                                                                                                  |
| aut the geor ration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aut the gear ratios                                                                                                                  |
| Out the year fatios.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Out the year fatios.                                                                                                                 |
| Assessment rest and Revision 12<br>Total 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Assessment rest and Revision 12                                                                                                      |



## Suggested List of Students Activity:

1. Observe the Lathe, drilling, Milling, Grinding and CNC machine of the institute and study its Operation and Maintenance manual .

2. List the possible Breakdown maintenance procedure that can be done on that machine.

### TEXT BOOKS / REFERENCE BOOKS

- 1. Srivastava S K., "Industrial Maintenance Management", 7<sup>th</sup> Edition, S. Chand and Co 2019.
- 2. Venkataraman K "Maintenance Engineering and Management", 11<sup>th</sup> Edition, PHI Learning Pvt. Ltd., 2017.
- Bhattacharya S N., "Installation, Servicing and Maintenance", 10<sup>th</sup> Edition, S. Chand and Co., 2019.

### **END SEMESTER EXAMINATION – PRACTICAL EXAM**

#### Note:

All the exercises should be given in the question paper and students are allowed to select by a lot or the question paper allotted from the DOTE shall be used.

Practical document should be submitted for the examination with a bonafide certificate.

| Part | Description                                  | Marks |
|------|----------------------------------------------|-------|
| А    | Aim & Tools required                         | 10    |
| В    | Procedure / Sketch / Setting / Tool Handling | 20    |
| С    | Alignment test / Dismantling / Assembling    | 20    |
| D    | Troubles / Report / Test Chart /             | 10    |
| E    | Written test (Theory Portions)               | 30    |
| F    | Viva Voce                                    | 10    |
|      | TOTAL MARKS                                  | 100   |

## Allocation Marks for End Semester Exam

**Note:** For the written test 30 MCQ shall be asked from the theory portions.



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

| S.No | Name of the Equipment's            | Quantity Required |
|------|------------------------------------|-------------------|
| 1    | Tail stock                         | 2 Nos             |
| 2    | AC Induction motor                 | 2 Nos             |
| 3    | DC Motor                           | 2 Nos             |
| 4    | Lathe                              | 2 Nos             |
| 5    | Drilling Machine                   | 2 Nos             |
| 6    | Milling Machine                    | 2 Nos             |
| 7    | Surface Grinder                    | 1 No.             |
| 8    | Tool & Cutter Grinder              | 1 No.             |
| 9    | Bearing with shaft assembly unit   | 2 Nos             |
| 10   | Plummer block                      | 2 Nos             |
| 11   | Abrasive belt grinder              | 1 No.             |
| 12   | Belt drive conveyor unit           | 2 Nos             |
| 13   | Counter mesh gear box              | 1 No.             |
| 14   | Steering gear box                  | 1 No.             |
| 15   | Magnetic stand with dial indicator | 4 Nos.            |
| 16   | Straight edge                      | 2 Nos             |
| 17   | Spirit level                       | 2 Nos             |
| 18   | Test Mandrels                      | 2 Nos             |

# Equipment / Facilities required to conduct the Practical Course.



| 1020235541 | CNC Programming | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 1 | 0 | 4 | 3 |

### Introduction

Computer Numerical Control (CNC) programming is a vital subject for diploma engineering students, focusing on the automation of machine tools through computer systems. CNC technology is foundational in modern manufacturing, allowing for precision, efficiency, and the ability to produce complex parts with minimal human intervention.

Proficiency in CNC programming opens up numerous career opportunities in various industries such as automotive, aerospace, manufacturing, and more. CNC programmers and operators are essential for creating high-quality, precision-engineered products.

This course equips students with the knowledge and skills necessary to excel in the dynamic and technologically advanced field of CNC machining, making them valuable assets in the engineering and manufacturing sectors.

#### **Course Objectives**

The objective of this course is to prepare the student,

- To understand the fundamentals of CNC
- To explain the construction and tooling of the CNC machine
- To Programme Production Jobs for CNC Turning Centre for different operations
- To Programme production jobs for CNC Vertical Machining Centre for different operations
- To operate a CNC lathe
- To operate a CNC milling machine

#### **Course Outcomes**

On successful completion of this course, the student will be able to,

- CO1: Recall safety procedure to be followed while working in CNC Machines.
- CO2: Create CNC part program for cylindrical components using CNC Turning Centre
- CO3: Produce components using CNC Turning centre
- CO4: Create CNC part program for rectangular components using CNC Machining Centre
- CO5: Produce components using CNC Machining centre



| 1020235541 | CNC Programming | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 1 | 0 | 4 | 3 |

## **Pre-requisites**

Knowledge of CNC Machines, Tools and accessories.

## CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | PO4 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | 2   | 2   | 3   | 1   | 3   | 3   |
| C02     | 3   | 2   | 3   | 3   | 2   | 3   | 3   |
| C03     | 3   | 3   | 2   | 3   | 1   | 3   | 3   |
| C04     | 3   | 2   | 3   | 3   | 1   | 3   | 3   |
| C05     | 3   | 2   | 3   | 3   | 2   | 3   | 3   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

### Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their curiosity to learn.
- Implement task-based learning activities where students work on specific tasks or projects.
- Incorporate technology tools and resources, such as online platforms, interactive multimedia, and virtual communication tools, to enhance engagement and provide additional practice opportunities.
- Incorporate formative and summative assessments to gauge student progress and provide targeted feedback.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- All demonstrations/Hand-on practices may be followed in the real environment as far as possible.



| 1020235541 | CNC Programming | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 1 | 0 | 4 | 3 |

#### Assessment Methodology:

|                       | Co                   | ontinuous Asses       | sment (40 mark         | (s)               | End                                   |
|-----------------------|----------------------|-----------------------|------------------------|-------------------|---------------------------------------|
|                       | CA1                  | CA2                   | CA3                    | CA4               | Semester<br>Examination<br>(60 marks) |
| Mode                  | Practical<br>Test    | Practical<br>Test     | Written Test<br>Theory | Practical<br>Test | Practical<br>Examination              |
| Portion               | Cycle I<br>Exercises | Cycle II<br>Exercises | All Portions           | All Exercises     | All Exercises<br>Experiments          |
| Duration              | 2 Periods            | 2 Periods             | 3 Hours                | 3 Hours           | 3 hours                               |
| Exam Marks            | 60                   | 60                    | 100                    | 100               | 100                                   |
| Converted to<br>Marks | 10                   | 10                    | 15                     | 15                | 60                                    |
| Marks                 | 1                    | 0                     | 15                     | 15                | 60                                    |
| Tentative<br>Schedule | 7th Week             | 14th Week             | 15th Week              | 16th Week         |                                       |

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.



| 1020235541 | CNC Programming | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 1 | 0 | 4 | 3 |

## The details of the documents to be prepared as per the instruction below.

Each experiment should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The part program, procedure, sketch and output should be written by the student manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| PART | DESCRIPTION                               | MARKS |
|------|-------------------------------------------|-------|
| Α    | Aim & Tools Required                      | 10    |
| В    | Writing Part Program                      | 20    |
| C    | Editing Program in machine and Component  | 20    |
|      | TOTAL                                     | 50    |
| D    | Practical Documents (As per the portions) | 10    |
|      |                                           | 60    |

### SCHEME OF EVALUATION

Cycle I: 1, 2, 3 and 4.

Cycle II: 5, 6, 7, 8 and 9.

• **CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



| 1020235541 | CNC Programming  | L | Т | Ρ | С |
|------------|------------------|---|---|---|---|
| PRACTICUM  | Cito Frogramming | 1 | 0 | 4 | 3 |

## **Question pattern – Written Test Theory**

| Description |                                                    | Marks        |           |  |
|-------------|----------------------------------------------------|--------------|-----------|--|
| Part – A    | 30 MCQ Questions.                                  | 30 X 1 Mark  | 30 Marks  |  |
| Part – B    | 7 Questions to be answered out of 10<br>Questions. | 7 X 10 Marks | 70 Marks  |  |
|             | TOTAL                                              |              | 100 Marks |  |

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

# SCHEME OF EVALUATION

### Model Practical Examination and End Semester Examination - Practical Exam

| PART | DESCRIPTION                              | MARKS |
|------|------------------------------------------|-------|
| Α    | Aim & Tools Required                     | 10    |
| В    | Writing Part Program                     | 20    |
| С    | Simulation                               | 10    |
| D    | Editing Program in machine and Component | 20    |
| E    | Written Test (Theory Portions)           | 30    |
| F    | Viva Voce                                | 10    |
|      | TOTAL                                    | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



| 1020235541 | CNC Programming | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 1 | 0 | 4 | 3 |

# Syllabus contents

| THEORY                                                                       |    |
|------------------------------------------------------------------------------|----|
| Introduction to NC, CNC and DNC – Components of a CNC system: Program,       | 15 |
| Machine Control Unit, and Machine Tool – Toolings for CNC – ISO Designation  |    |
| for Tooling – Tool Material Selection – Tool Inserts.                        |    |
| Steps involved in CNC Programming: Process Planning, Part Programming,       |    |
| Program Entry, Program Verification, and Production – Manual Part            |    |
| Programming, Data required for Manual Part Programming – Coordinate          |    |
| system – Designation of axes – Datum points and Reference Points – NC        |    |
| Dimensioning: Absolute, and Incremental - CNC Programming procedure –        |    |
| Format of a program.                                                         |    |
| CNC Part Programming for Turning Centres – Axes system used for turning -    |    |
| Preparatory functions (G-Codes) for turning Centres – Auxiliary functions    |    |
| (M-Codes) for turning centres – Tool function codes – Speed function codes   |    |
| – Feed Specification codes - Rapid Positioning – Tool nose radius            |    |
| compensation - Linear Interpolation – Circular Interpolation/Filleting.      |    |
| Canned/Fixed Cycles: Box turning cycle (G90) - Taper turning (G90) –         |    |
| Facing/Taper facing cycle (G94) – Grooving/Parting cycle (G75) – Single      |    |
| threading cycle (G92) and Multiple threading cycle (G76) – Multiple turning  |    |
| cycle or Stock removal cycle (G70 & G71) – Peck drilling cycle (G74) –       |    |
| Boring/Taper Boring cycle (G90)                                              |    |
| CNC Part Programming for Machining Centres – Axes system used for            |    |
| Machining centres - Preparatory functions (G-Codes) for Machining Centres –  |    |
| Auxiliary functions (M-Codes) for Machining centres – Preset – Cutter radius |    |
| compensation – Tool length compensation - Linear Interpolation – Circular    |    |
| Interpolation.                                                               |    |
| Canned Cycles: Drilling cycle (G81) – Counter sinking/Counter boring (G82) – |    |
| Tapping cycle (G84) – Reaming Cycle (G85) – Boring Cycle (G86) – Peck        |    |



| 1020235541 | CNC Programming | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 1 | 0 | 4 | 3 |

| drillin | g cycle (G83) – Sub Program – Mirroring – Circular Pocketing (G170 &                                                                                                                                   |   |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| G171    | ) – Rectangular Pocketing (G172 & G173).                                                                                                                                                               |   |
| Ex.No   | Name of the Experiment                                                                                                                                                                                 |   |
| 1.      | Write a Part Program for producing the component shown below in                                                                                                                                        | 5 |
|         | the turning center, simulate it and produce the component – Using                                                                                                                                      |   |
|         | Linear and Circular Interpolation. Raw Material Size: $\phi$ 30 mm dia x                                                                                                                               |   |
|         | 41 mm length. Component Diagram:                                                                                                                                                                       |   |
|         |                                                                                                                                                                                                        |   |
| 2.      | Write a Part Program for producing the component shown below in                                                                                                                                        | 5 |
|         | the turning center, simulate it and produce the component – Using                                                                                                                                      |   |
|         | Box turning cycle, Facing cycle, and Grooving cycle (G90, G94, and                                                                                                                                     |   |
|         | G75). Raw Material Size: $\phi$ 30 mm dia x 70 mm length                                                                                                                                               |   |
|         | Component Diagram: Note: Facing 0.5 mm (20 mm to 19.5 mm)                                                                                                                                              |   |
|         |                                                                                                                                                                                                        |   |
|         |                                                                                                                                                                                                        |   |
|         |                                                                                                                                                                                                        |   |
|         | 1. Raw Material       4. Facing/Taper Facing Cycle (G94)         2. Box turning Cycle (G90)       5. Grooving/Parting Cycle (G75)         3. Taper Turning Cycle (G90)       6. Circular Interpolation |   |


| 1020235541 | CNC Programming | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 1 | 0 | 4 | 3 |





| 1020235541 | CNC Programming | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 1 | 0 | 4 | 3 |





| 1020235541 | CNC Programming | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 1 | 0 | 4 | 3 |





| 1020235541 | CNC Programming | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 1 | 0 | 4 | 3 |

| 9. | Write a Part Program for producing the component shown below in the Machining center simulate it and produce the component – Using | 5  |
|----|------------------------------------------------------------------------------------------------------------------------------------|----|
|    | Circular and Rectangular Pocketing                                                                                                 |    |
|    | Raw Material Size: 100 mm x 100 mm x 20 mm                                                                                         |    |
|    | Component Diagram:                                                                                                                 |    |
|    |                                                                                                                                    |    |
|    | Revision + Test                                                                                                                    | 15 |
|    | Total                                                                                                                              | 75 |

### Textbook:

- 1. S.K. Sinha, CNC Programming, Galgotia Publications Pvt Ltd., 2011
- 2. P. M. Agrawal, and V. J. Patel, CNC Fundamentals and Programming, First Edition, Charotar Publishing House Pvt. Limited, 2009.
- Pawan Negi, Mangey Ram, and Om Prakash Yadav, Basics of CNC Programming, River Publishers, 2019
- 4. Peter Smid, CNC Control Setup for Milling and Turning Mastering CNC Control Systems, Industrial Press, 2010.

### Website links for reference:

- 1. https://www.youtube.com/watch?v=\_5r2XR1h1aQ
- 2. https://www.youtube.com/watch?v=eJ432X2dR9A



| 1020235541 | CNC Programming | L | Т | Ρ | С |
|------------|-----------------|---|---|---|---|
| PRACTICUM  |                 | 1 | 0 | 4 | 3 |

#### END SEMESTER EXAMINATIONS - PRACTICAL EXAM

#### Note:

All the exercises/experiments should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

### SCHEME OF EVALUATION

| PART | DESCRIPTION                              | MARKS |
|------|------------------------------------------|-------|
| Α    | Aim & Tools Required                     | 10    |
| В    | Writing Part Program                     | 20    |
| С    | Simulation                               | 10    |
| D    | Editing Program in machine and Component | 20    |
| E    | Written Test                             | 30    |
| F    | Viva Voce                                | 10    |
|      | TOTAL                                    | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.

### LIST OF EQUIPMENT

- 1. CNC Turning centre 2 No.
- 2. CNC Milling Centre 2 No.
- 3. CNC Simulation Software
- 4. Computer 30 Nos.



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

### Introduction:

SAP stands for Systems, Applications, and Products. The practical use of SAP was first seen when data related to accounts and payroll was stored in an electrical device with specific programs to use the database logically and practically. ERP software is one of the most critical aspects of SAP software. To understand why the SAP Course is so important and popular, one needs to know about the areas where it works and the other aspects attached to SAP. Almost 80% of medium and small-sized organizations have joined the list of SAP services alongside large organizations.

# **Course Objectives:**

After completing this subject, the student will be able to

- Equip with the skills and knowledge of SAP
- Develop and maintain SAP applications using various programming language.
- Understand the TDA/SAP process
- Inderstand the key steps in the TDA/SAP process.
- Be able to communicate the TDA/SAP process to others.

### **Course Outcomes**

On successful completion of this course, the student will be able to

- CO1: Understand the fundamental concepts of Enterprise Resource Planning (ERP) and SAP.
- CO2: Establish a strong foundation in ABAP programming.
- CO3: Develop skills in managing data structures using the ABAP Data Dictionary.
- CO4: Introduce Object-Oriented ABAP concepts.
- CO5: Master the creation of various types of ABAP reports.

### **Pre-requisites:**

Knowledge of basics of Engineering and Industrial engineering



| 1020235542 | Systems Applications and Product (SAD) | L | Т | Ρ | С |
|------------|----------------------------------------|---|---|---|---|
| PRACTICUM  | Systems Applications and Froduct (SAF) | 1 | 0 | 4 | 3 |

### CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | -   | -   | -   | -   | 3   | 1   | 3   |
| C02     | -   | -   | -   | -   | 3   | 3   | 3   |
| C03     | -   | -   | -   | 1   | -   | 3   | 2   |
| C04     | -   | 1   | 3   | 3   | 2   | 3   | 2   |
| C05     | -   | 2   | 3   | 3   | 3   | 3   | 3   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy:

- The instructional strategy for teaching SAP in polytechnic colleges emphasizes practical application and industry relevance.
- Through a curriculum aligned with the state technical education board, the syllabus is broken down into manageable units, prioritizing topics pertinent to Indian engineering contexts.
- Engage and Motivate: Instructors should actively engage students to boost their learning confidence
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an *engaging* learning experience.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.



• Continuous feedback mechanisms ensure the refinement and effectiveness of the instructional approach.

# **Assessment Methodology:**

|                       | Co                   | ontinuous Asses       | sment (40 mark         | (s)               | End                                   |
|-----------------------|----------------------|-----------------------|------------------------|-------------------|---------------------------------------|
|                       | CA1                  | CA2                   | CA3                    | CA4               | Semester<br>Examination<br>(60 marks) |
| Mode                  | Practical<br>Test    | Practical<br>Test     | Written Test<br>Theory | Practical<br>Test | Practical<br>Examination              |
| Portion               | Cycle I<br>Exercises | Cycle II<br>Exercises | All Portions           | All Exercises     | All Exercises<br>Experiments          |
| Duration              | 2 Periods            | 2 Periods             | 3 Hours                | 3 Hours           | 3 hours                               |
| Exam Marks            | 60                   | 60                    | 100                    | 100               | 100                                   |
| Converted to<br>Marks | 10                   | 10                    | 15                     | 15                | 60                                    |
| Marks                 | 1                    | 0                     | 15                     | 15                |                                       |
| Internal<br>Marks     |                      | 60                    |                        |                   |                                       |
| Tentative<br>Schedule | 7th Week             | 14th Week             | 15th Week              | 16th Week         |                                       |

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

### The details of the documents to be prepared as per the instruction below.

Each experiment should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file documents. The Program, Procedure, Sketch and Output should be written by the student manually. The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| PART | ART DESCRIPTION                           |    |  |  |  |  |
|------|-------------------------------------------|----|--|--|--|--|
| Α    | Aim / Procedure                           | 10 |  |  |  |  |
| В    | Steps / Execution                         | 20 |  |  |  |  |
| С    | Report / Presentation                     | 20 |  |  |  |  |
|      | TOTAL                                     | 50 |  |  |  |  |
| D    | Practical Documents (As per the portions) | 10 |  |  |  |  |
|      |                                           | 60 |  |  |  |  |

### SCHEME OF EVALUATION

Cycle I: 1, 2, 3, 4 and 5.

Cycle II: 6, 7, 8, 9 and 10.



 CA 3: Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.

| Description |                                                    | Marks        |           |  |
|-------------|----------------------------------------------------|--------------|-----------|--|
| Part – A    | 30 MCQ Questions.                                  | 30 X 1 Mark  | 30 Marks  |  |
| Part – B    | 7 Questions to be answered out of 10<br>Questions. | 7 X 10 Marks | 70 Marks  |  |
|             | TOTAL                                              |              | 100 Marks |  |

**Question pattern – Written Test Theory** 

**CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

### SCHEME OF EVALUATION

### Model Practical Examination and End Semester Examination - Practical Exam

| PART | DESCRIPTION                    | MARKS |
|------|--------------------------------|-------|
| Α    | Aim / Procedure                | 10    |
| В    | Steps / Execution              | 20    |
| С    | Report / Presentation          | 20    |
| D    | Result                         | 10    |
| E    | Written Test (Theory Portions) | 30    |
| F    | Viva Voce                      | 10    |
|      | TOTAL                          | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

# **Syllabus Contents**

| Theory Portion- Unit I : SAP:                                                        |          |
|--------------------------------------------------------------------------------------|----------|
| Introduction-SAP - SAP r/3 architecture - central system – distributed presentation  | 8        |
| - 2-tier configuration - 3-tier configuration. System landscape and flow - single    |          |
| system landscape - two system landscape - three system landscape - multi system      |          |
| landscape. Installation of sap - installation concepts on windows & UNIX and quick   |          |
| sizing - naming convention, software kit, sap licensing - installation procedure -   |          |
| windows application server for unix sap system - r/3 directory structure, kernel gui |          |
| administrator – optimization – security. Operation modes - manual switching of op    |          |
| modes - exceptional mode – monitoring.                                               |          |
| Practical Exercises                                                                  |          |
| Exercise 1: Creating and Maintaining Master Records, Architecture - Logon and        | 5        |
| Password Security, Protecting Special Users                                          |          |
| <b>Exercise 2:</b> Creating and Maintaining Single and Mass Users and User Groups -  | 5        |
| Copying, Deleting.                                                                   |          |
| <b>Exercise 3:</b> Creating and Maintaining Single and Mass Users and User Groups    | 5        |
| Locking / Unlocking Users.                                                           |          |
| Exercise 4: Create/Maintaining Authorization/Profile Manually                        | 5        |
| <b>Exercise 5:</b> Create/Maintaining Roles/Generating Profiles by using PFCG.       | 5        |
| Theory Portion - Unit II : SAP General Administration:                               | <u>I</u> |
| General Administration – client administration - client maintenance - copying client | 7        |
| within r/3 system (local). copying client between r/3 systems (remote) -             |          |
| export/import - protecting client.                                                   |          |
| Monitoring and verifying a client copy - deleting client - tips and                  |          |
| troubleshooting.General administration - transport management system - tms           |          |
| terminology and concepts - configuring tms and checking transport directory -        |          |
| configuring transport domain, domain controller and group - configuring virtual sap  |          |
| system and displaying configuration - including sap systems in the transport         |          |
|                                                                                      |          |



| 1020235542 | Systems Applications and Product (SAP) | L | Т | Ρ | С |
|------------|----------------------------------------|---|---|---|---|
| PRACTICUM  |                                        | 1 | 0 | 4 | 3 |

| domain - creating consolidation and delivery routes - maintaining sap systems        |    |
|--------------------------------------------------------------------------------------|----|
| without common transport directory - configuring external systems - locking and      |    |
| unlocking tms for a sap system - deleting sap system from the transport domain -     |    |
| deleting tms configuration. Change and Transport System - releasing and              |    |
| transporting change request and tasks - customizing, workbench, transport            |    |
| organizer - importing change requests. Spool Administration - print related          |    |
| terminology in os/sap level - setting local, remote and front-end printing - logical |    |
| and real spool server - managing spool requests using output controller -            |    |
| connecting output devices to window system – saplpd, TemSE, Authorization.           |    |
| Practical Exercises                                                                  |    |
| Exercise 6: Creating Consolidation and Delivery Routes- Maintaining SAP Systems      | 5  |
| without Common Transport Directory - Configuring External System.                    |    |
| <b>Exercise 7:</b> Locking and Unlocking TMS for a SAP System.                       | 5  |
| <b>Exercise 8:</b> Deleting SAP System from the Transport Domain.                    | 5  |
| <b>Exercise 9:</b> Deleting TMS Configuration From the Transport Domain.             | 5  |
| Exercise 10: Connecting Output Devices to Window System.                             | 5  |
| Assessment Test and Revision                                                         | 10 |
| Total                                                                                | 75 |
|                                                                                      |    |

### Text and Reference Books:

- 1. Sushil Markandeya , Kaushik Roy, SAP ABAP: Hands-On Test Projects with Business Scenarios, Apress, 2014.
- 2. Martin Murray, Jawad Akhtar, Materials Management with SAP ERP: Functionality and Technical Configuration, SAP Press, First Edition, 2016.
- 3. Sudipta Malakar, SAP/ ABAP/ HANA Programming, BPB Publication, 2018



#### Web Reference:

- https://www.youtube.com/watch?v=1jFQMadZLfs
- https://www.coursera.org/sap
- Free SAP Training | openSAP
- SAP Help Portal

#### END SEMESTER EXAMINATIONS – PRACTICAL EXAM

#### Note:

All the exercises/experiments should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

#### SCHEME OF EVALUATION

| Part | Description                    | Marks |
|------|--------------------------------|-------|
| A    | Aim / Procedure                | 10    |
| В    | Steps / Execution              | 20    |
| С    | Report / Presentation          | 20    |
| D    | Result                         | 10    |
| E    | Written Test (Theory Portions) | 30    |
| F    | Viva Voce                      | 10    |
|      | TOTAL MARKS                    | 100   |



| 1020235543 | Industrial IoT | L | Т | Ρ | С |
|------------|----------------|---|---|---|---|
| PRACTICUM  |                | 1 | 0 | 4 | 3 |

#### Introduction:

Industrial Internet of Things or IIoT refers to interconnected instruments, sensors and other devices which can be networked together in an industrial setting. This connectivity enables remote access, efficient monitoring, data acquisition and collection, analysis and exchange of different data sources and a lot more. IIoT solutions have enormous potential for increasing productivity, and are also known for their low cost and quick implementation.

#### **Course Objectives:**

The objective of this course is to enable the student to

- Understand the application of IIoT in automation of commercial and real world applications.
- Summarize the functions of various types of sensors.
- Understand the Designing Industrial IOT Systems for various applications.
- Facilitate the students to design simple IIoT concepts.

#### **Course Outcomes:**

On successful completion of this course, the student will be able to

- CO1: Explain the basic computing features of the Arduino platform and programming.
- CO2: Adapt to the Arduino platform and display their name in the LCD display.

CO3: Perform LED blinking and LED pattern creation with push button control with Arduino.

CO4: Perform IR sensor interfacing, ultrasonic sensor interfacing and soil moisture interfacing with ESP32.

CO5: Design a system that integrates ultrasonic sensors for accurate distance measurement.

#### **Pre-requisites:**

Applied Physics



| 1020235543 | Industrial IoT | L | Т | Ρ | С |
|------------|----------------|---|---|---|---|
| PRACTICUM  |                | 1 | 0 | 4 | 3 |

CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | -   | 1   | 3   | -   | -   | -   |
| C02     | 3   | -   | 1   | 3   | -   | -   | -   |
| C03     | 3   | -   | 1   | 3   | -   | -   | -   |
| CO4     | 3   | -   | 1   | 3   | -   | -   | -   |
| C05     | 3   | -   | 1   | 3   | -   | -   | -   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

# Instructional Strategy:

- It is advised that teachers take steps to increase the students' attention and boost their curiosity to learn.
- Implement task-based learning activities where students work on specific tasks or projects.
- Incorporate technology tools and resources, such as online platforms, interactive multimedia, and virtual communication tools, to enhance engagement and provide additional practice opportunities.
- Incorporate formative and summative assessments to measure student progress and provide targeted feedback.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- All demonstrations/Hand-on practices may be followed in the real environment as far as possible.



| 1020235543 | Industrial IoT | L | Т | Ρ | С |
|------------|----------------|---|---|---|---|
| PRACTICUM  |                | 1 | 0 | 4 | 3 |

#### Assessment Methodology:

|              | Co        | ontinuous Asses | sment (40 mark | (s)           | End           |
|--------------|-----------|-----------------|----------------|---------------|---------------|
|              |           |                 |                |               | Semester      |
|              | CA1       | CA2             | CA3            | CA4           | Examination   |
|              |           |                 |                |               | (60 marks)    |
| Mode         | Practical | Practical       | Written Test   | Practical     | Practical     |
| WOUE         | Test      | Test            | Theory         | Test          | Examination   |
| Portion      | Cycle I   | Cycle II        | All Portions   |               | All Exercises |
| FULION       | Exercises | Exercises       | All Foltions   | All LACICISES | Experiments   |
| Duration     | 2 Periods | 2 Periods       | 3 Hours        | 3 Hours       | 3 hours       |
| Exam Marks   | 60        | 60              | 100            | 100           | 100           |
| Converted to | 10        | 10              | 15             | 15            | 60            |
| Marks        | 10        | 10              | 15             | 15            | 00            |
| Marks        | 1         | 0               | 15             | 15            | 60            |
| Tentative    | 7th Week  | 14th Week       | 15th Week      | 16th Week     |               |
| Schedule     |           |                 |                |               |               |

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total



| 1020235543 | Industrial IoT | L | Т | Ρ | С |
|------------|----------------|---|---|---|---|
| PRACTICUM  |                | 1 | 0 | 4 | 3 |

marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

### The details of the documents to be prepared as per the instruction below.

Each experiment should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook / printed manual / file. The Program, Procedure, Sketch and Output should be written by the student manually. The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| PART | DESCRIPTION                               | MARKS |
|------|-------------------------------------------|-------|
| Α    | Aim & Tools Required                      | 10    |
| В    | Procedure / Steps                         | 20    |
| С    | Execution                                 | 20    |
|      | TOTAL                                     | 50    |
| D    | Practical Documents (As per the portions) | 10    |
|      |                                           | 60    |

# SCHEME OF EVALUATION

Cycle I: 1, 2, 3 4, and 5.

Cycle II: 6, 7, 8, 9 and 10.

• **CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



| 1020235543 | Industrial IoT | L | Т | Ρ | С |
|------------|----------------|---|---|---|---|
| PRACTICUM  |                | 1 | 0 | 4 | 3 |

# **Question pattern – Written Test Theory**

| Description |                                                    | Mar          | ks        |
|-------------|----------------------------------------------------|--------------|-----------|
| Part – A    | 30 MCQ Questions.                                  | 30 X 1 Mark  | 30 Marks  |
| Part – B    | 7 Questions to be answered out of 10<br>Questions. | 7 X 10 Marks | 70 Marks  |
| TOTAL       |                                                    |              | 100 Marks |

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

### SCHEME OF EVALUATION

### Model Practical Examination and End Semester Examination - Practical Exam

| PART | DESCRIPTION          | MARKS |
|------|----------------------|-------|
| Α    | Aim & Tools Required | 10    |
| В    | Procedure / Steps    | 20    |
| С    | Execution            | 20    |
| D    | Output / Result      | 10    |
| E    | Written Test         | 30    |
| F    | Viva Voce            | 10    |
|      | TOTAL                | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



| 1020235543 | Industrial IoT | L | Т | Ρ | С |
|------------|----------------|---|---|---|---|
| PRACTICUM  |                | 1 | 0 | 4 | 3 |

# **Syllabus Contents**

| Theory F  | Portion                                                                                                                                |        |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------|--------|
| UNIT I: I | NTRODUCTION TO INDUSTRIAL IOT (IIOT) SYSTEMS                                                                                           | Period |
| The Var   | ious Industrial Revolutions, Role of Internet of Things (IoT) & Industrial                                                             | 7      |
| Internet  | of Things (IIoT) in Industry, Industry 4.0 revolutions, Support System for                                                             |        |
| Industry  | 4.0, Smart Factories.                                                                                                                  |        |
| UNIT II:  | IMPLEMENTATION SYSTEMS FOR IIOT                                                                                                        |        |
| Sensors   | and Actuators for Industrial Processes, Sensor networks, Process                                                                       | 8      |
| automat   | ion and Data Acquisitions on IoT Platform, Microcontrollers and                                                                        |        |
| Embedd    | ed PC roles in IIoT, Wireless Sensor nodes with Bluetooth, WiFi, and LoRa                                                              |        |
| Protocol  | Is and IoT Hub systems.                                                                                                                |        |
| Practica  | Exercises:                                                                                                                             |        |
|           |                                                                                                                                        | _      |
| 1         | To implement LED Blink and LED pattern with Arduino                                                                                    | 5      |
| 2         | Creating different LED patterns and controlling with push button switches.                                                             | 5      |
| 3         | Automated LED light control based on input from IR sensor and LDR                                                                      | 5      |
| 4         | To display your name in a LCD 16 x2 display with Arduino.                                                                              | 5      |
| 5         | Controlling servo motors with the help of joystick                                                                                     | 5      |
| 6         | Measurement of temperature and Pressure using ESP32                                                                                    | 5      |
| 7         | Calculate the distance to an object with the help of an Ultrasonic sensor and display it on a LCD                                      | 5      |
| 8         | Design a system that integrates ultrasonic sensors for accurate distance measurement in the identified areas.                          | 5      |
| 9         | integrate sensors such as GPS, accelerometers, and panic Basic<br>Burglar alert security system with the help of PIR sensor and Buzzer | 5      |
| 10        | Modules and sensor interfacing - Interfacing IR sensor and LED with ESP32                                                              | 5      |
|           | Revision + Continuous Assessment                                                                                                       | 10     |
|           | Total Period                                                                                                                           | 75     |



| 1020235543 | Industrial IoT | L | Т | Ρ | С |
|------------|----------------|---|---|---|---|
| PRACTICUM  |                | 1 | 0 | 4 | 3 |

### Suggested List of Students Activity:

- 1. Each students to write and submit the assignment on the topic 'Contrast IT and OT'
- 2. Four students can be grouped as a batch and practice an additional experiment to interface any one of the Arduino compatible sensors with Arduino and observe the behaviour of sensors.
- 3. Introduction to Arduino platform and programming
- 4. Study on various sensors and actuators.

### Text and Reference Books:

- 1. Sudip Misra, Anandarup Mukherjee, Arijit Roy, Introduction to IoT, First Edition, Cambridge University Press, 2022.
- Alasdair Gil Christ, Industry 4.0: The Industrial Internet of Things, Apress, Publications, 2016.
- 3. Sudan Jha, Usman Tariq, Gyanendra Prasad Joshi, Vijender Kumar Solanki, Industrial Internet of Things: Technologies, Design, and Applications, CRC Press, 2022.

#### Web-based/Online Resources:

https://onlinecourses.nptel.ac.in/noc20\_cs69/preview

### Equipment / Facilities required to conduct the Practical Course.

| S.No | Name of the Equipment's | Quantity<br>Required |
|------|-------------------------|----------------------|
| 1.   | Arduino UNO set         | 15                   |
| 2.   | ESP32 set -Type C       | 15                   |
| 3.   | LED Bulb                | 15                   |
| 4.   | Resistor                | 15                   |
| 5.   | Push button             | 15                   |
| 6.   | Servo motor 5V DC       | 15                   |
| 7    | DC motor                | 15                   |
| 8    | 5V DC Relay             | 15                   |



| 1020235543 | Industrial IoT | L | Т | Ρ | С |
|------------|----------------|---|---|---|---|
| PRACTICUM  |                | 1 | 0 | 4 | 3 |

| 9  | Mini Breadboard                 | 15          |
|----|---------------------------------|-------------|
| 10 | 16 X 2 LCD Display with TTL     | 15          |
| 11 | Gas sensor MQ2                  | 15          |
| 12 | IR Sensor                       | 15          |
| 13 | Temperature sensor DHT11 module | 15          |
| 14 | Ultrasonic sensor HC-SR04       | 15          |
| 15 | Joystick module                 | 15          |
| 16 | Jumper wires - 3 nos.           | As Required |

# END SEMESTER EXAMINATIONS - PRACTICAL EXAM

#### Note:

All the exercises/experiments should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

### SCHEME OF EVALUATION

| PART | DESCRIPTION          | MARKS |
|------|----------------------|-------|
| Α    | Aim & Tools Required | 10    |
| В    | Procedure / Steps    | 20    |
| С    | Execution            | 20    |
| D    | Output / Result      | 10    |
| E    | Written Test         | 30    |
| F    | Viva Voce            | 10    |
|      | TOTAL                | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



| 1020235544 | Advanced Welding Technologies          | L | Т | Ρ | С |
|------------|----------------------------------------|---|---|---|---|
| PRACTICUM  | ······································ | 1 | 0 | 4 | 3 |

#### Introduction:

This syllabus outlines advanced welding technologies that covers various welding processes and techniques. The course is divided into 3 units that cover topics like introductory welding concepts, common arc and resistance welding processes, welding metallurgy, and weldment inspection and testing. The course aims to impart knowledge of advanced welding practices, welding process parameters, and the comparative merits of different welding methods. Students should learn to select the appropriate welding technique for various joint types and understand how to produce quality weldments.

#### **Course Objectives:**

- 1. To learn various concepts related to welding and its applications.
- 2. To have practical purview of various welding processes, welding standards, and advanced welding processes.
- 3. Familiarise with the working of the various welding processes.

#### **Course Outcomes:**

#### On successful completion of this course, the student will be able to

- CO1: Explain the physics of Welding
- CO2: Identify the appropriate Welding technique for the components
- CO3: Select proper techniques to identify the welding defects
- CO4: Acquire skills on advanced welding techniques
- CO5: Demonstrate the necessary skills to identify the defects in welding.

#### **Pre-requisites:**

Knowledge of metal joining procedure



| 1020235544 | Advanced Welding Technologies | L | Т | Ρ | С |
|------------|-------------------------------|---|---|---|---|
| PRACTICUM  |                               | 1 | 0 | 4 | 3 |

# CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   |     |     | 3   |     |     |     |
| C02     | 3   |     |     | 3   |     |     |     |
| CO3     | 3   |     |     | 3   |     |     |     |
| CO4     | 3   |     |     | 3   |     |     |     |
| C05     | 3   |     |     | 3   |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy:

- 1. Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- 2. Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- 3. Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- 4. Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- 5. Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- 6. Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies



#### **Assessment Methodology:**

|                | Co        | ontinuous Asses | sment (40 mark | (s)           | End           |
|----------------|-----------|-----------------|----------------|---------------|---------------|
|                |           |                 |                |               | Semester      |
|                | CA1       | CA2             | CA3            | CA4           | Examination   |
|                |           |                 |                |               | (60 marks)    |
| Mada           | Practical | Practical       | Written Test   | Practical     | Practical     |
| Mode           | Test      | Test            | Theory         | Test          | Examination   |
| Portion        | Cycle I   | Cycle II        | All Portions   |               | All Exercises |
| FOLION         | Exercises | Exercises       | All Foltions   | All LXercises | Experiments   |
| Duration       | 2 Periods | 2 Periods       | 3 Hours        | 3 Hours       | 3 hours       |
| Exam Marks     | 60        | 60              | 100            | 100           | 100           |
| Converted to   | 10        | 10              | 15             | 15            | 60            |
| Marks          | 10        | 10              |                |               | 00            |
| Marks          | 1         | 0               | 15             | 15            | 60            |
| Internal Marks | 40        |                 |                |               |               |
| Tentative      | 7th Week  | 14th Week       | 15th Week      | 16th Week     |               |
| Schedule       |           |                 |                |               |               |

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total



marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

# The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice.

The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook / printed manual / file. The Steps, Procedure, Sketch and Result should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| PART | DESCRIPTION                               | MARKS |
|------|-------------------------------------------|-------|
| Α    | Joint Preparation                         | 20    |
| В    | Procedure                                 | 20    |
| C    | Weld bead                                 | 10    |
|      | TOTAL                                     | 50    |
| D    | Practical Documents (As per the portions) | 10    |
|      |                                           | 60    |

### SCHEME OF EVALUATION

Cycle - I Exercise 1, 2, 3, 4, 5 and 6.

# Cycle - II Exercise 7, 8, 9, 10, 11 and 12.

• **CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



| 1020235544 | Advanced Welding Technologies | L | Т | Ρ | С |
|------------|-------------------------------|---|---|---|---|
| PRACTICUM  |                               | 1 | 0 | 4 | 3 |

# **Question pattern – Written Test Theory**

|          | Description                          |              | ks        |
|----------|--------------------------------------|--------------|-----------|
| Part – A | 30 MCQ Questions.                    | 30 X 1 Mark  | 30 Marks  |
| Part – B | 7 Questions to be answered out of 10 | 7 X 10 Marks | 70 Marks  |
|          | Questions.                           |              |           |
|          | TOTAL                                |              | 100 Marks |

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

# SCHEME OF EVALUATION

### Model Practical Examination and End Semester Examination - Practical Exam

| PART | DESCRIPTION       | MARKS |
|------|-------------------|-------|
| Α    | Joint Preparation | 20    |
| В    | Procedure         | 20    |
| С    | Weld bead         | 10    |
| D    | Finish            | 10    |
| Е    | Written Test      | 30    |
| F    | Viva Voce         | 10    |
|      | TOTAL             | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

# Syllabus contents

| Theory Portion                                                                      | Period |
|-------------------------------------------------------------------------------------|--------|
| UNIT 1: Introduction and physics of welding                                         | 15     |
| Overview of welding processes and their classification, edge preparation, weld      |        |
| symbols - types of joints - weld nomenclature - electrode - codes - flux coating -  |        |
| modes of metal transfer - heat sources - types of welding arc - Arc characteristics |        |
| - Voltage-current characteristics – welding efficiency - heat affected zone (HAZ) - |        |
| welding techniques                                                                  |        |
| UNIT 2: Arc, Gas and other welding processes                                        |        |
| Fundamental principles - arc welding - carbon arc welding - shielded metal arc      |        |
| welding – submerged arc welding – TIG – MIG – plasma arc welding – electro slag     |        |
| welding - advantages, limitations and applications; Oxy-acetylene welding –         |        |
| air-acetylene welding – advantages, limitations and applications.                   |        |
| LASER beam welding, robot welding, solid state welding - diffusion bonding,         |        |
| explosive welding, ultrasonic welding, friction welding, forge welding - thermit    |        |
| welding - atomic hydrogen welding - electron beam welding - under water welding -   |        |
| electric resistance welding, spot, seam – its advantages, disadvantages and         |        |
| applications.                                                                       |        |
| UNIT 3: Welding defects and Inspection                                              |        |
| Welding defects - causes and remedies - Weldability test - Weldability of metals    |        |
| like steels, stainless steels, aluminium, copper, nickel and titanium alloys –      |        |
| inspections – purpose – inspection methods – visual inspection - DPT – MPT –        |        |
| radiographic test – ultrasonic test – phased array ultrasonic test (PAUT) - case    |        |
| studies in testing of welded joints - Software in welding and importance.           |        |
| Practice                                                                            | 10     |
| Arc welding basic exercises (for practice) :                                        |        |
| Lap joint, Butt joint, Corner joint, T-joint                                        |        |
| Gas welding basic exercises (for practice) :                                        |        |
| Lap joint, Butt joint, Corner joint, T-joint                                        |        |



| 1020235544 | Advanced Welding Technologies          | L | Т | Ρ | С |
|------------|----------------------------------------|---|---|---|---|
| PRACTICUM  | ······································ | 1 | 0 | 4 | 3 |

| Practical Exercises                                                     |         |
|-------------------------------------------------------------------------|---------|
| Exercises for Practical Exam.:                                          | 40      |
| 1. Make a butt and fillet joints by down hand welding (single V) using  | arc     |
| welding.                                                                |         |
| 2. Make a butt and fillet joints by vertical welding using arc welding. |         |
| 3. Welding of pipes using arc welding                                   |         |
| 4. Butt welding of thin sheets leftward, rightward and downward using g | gas     |
| welding.                                                                |         |
| 5. Welding of tubes using gas welding.                                  |         |
| 6. TIG welding practice – butt joint.                                   |         |
| 7. MIG welding practice – butt joint.                                   |         |
| 8. Spot welding practice in thin sheets.                                |         |
| 9. Inspection of welding – visual and magnetic particle test.           |         |
| 10. Inspection of welding – die penetrant test and ultrasonic test.     |         |
| Revision + T                                                            | est 10  |
| Тс                                                                      | otal 75 |

Cycle - I Exercise 1, 2, 3, 4, 5 and 6.

Cycle - II Exercise 7, 8, 9, 10, 11 and 12.

### Suggested List of Students Activity:

- Observe the welding machine in the institute and study its specifications. List the possibility of different method of weld joints that can be used.
- Study the type of current used in the welding machine and draw the circuit diagram.
- Study the types of electrode used and its industrial applications.



### **Text and Reference Books:**

- 1. Advance Welding Technology by S.A. Rizvi , S.K. Kataria & Sons. 4th, reprint 2019.
- 2. Welding Engineering and Technology by R.S. PARMAR, IIT, Delhi, Kanna Publishers, 1999.
- 3. Welding principles and practices by Edward R. Bohnart, Mc. Graw Hill Education, 2014.

#### WEB REFERENCE

- https://archive.nptel.ac.in/courses/112/103/112103263/#
- https://archive.nptel.ac.in/courses/112/103/112103244/
- https://archive.nptel.ac.in/courses/112/107/112107089/
- https://youtube.com/playlist?list=PLwdnzIV3ogoW9g44SFbiiCjyMOMPnNBL8&feat ure=shared

### **END SEMESTER EXAMINATIONS – PRACTICAL EXAM**

#### Note:

All the exercises/experiments should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

| SCHEME | <b>OF EVAL</b> | <b>UATION</b> |
|--------|----------------|---------------|
|--------|----------------|---------------|

| PART | DESCRIPTION                    | MARKS |
|------|--------------------------------|-------|
| Α    | Joint Preparation              | 20    |
| В    | Procedure                      | 20    |
| С    | Weld bead                      | 10    |
| D    | Finish                         | 10    |
| E    | Written Test (Theory Portions) | 30    |
| F    | Viva Voce                      | 10    |
|      | TOTAL                          | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



| 1020235545 | Industrial Robotics | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 1 | 0 | 4 | 3 |

#### Introduction

It has been realized that rapid industrialization and globalization needs industries to be more competitive and deliver cost effective quality products. This needs industries to implement flexible manufacturing systems where Robotic technology plays a major role. Hence study of robotic technology is very essential, To acquire knowledge about the hydraulic and pneumatic systems and its functions of the components. Understand the control methods of automation.

#### **Course Objectives**

The objective of this course is to prepare the student,

- To understand the basics of robot components and process automation.
- To execute the Robot programming using simulation software.
- To execute the Robot programming and Execute.
- To perform the basics of robotics and simulation of software fixtures for material handling and industrial applications.
- To execute program for various applications in manufacturing by using robot programming and industrial safety systems.
- To learn about the software and hardware systems for industrial Robotics

### **Course Outcomes**

On successful completion of this course, the student will be able to,

CO1: Describe the components of Robot and its joints & links in Robot configuration,

CO2: Classify the robot controller Drives and grippers,

CO3: Explain industrial applications of robot in Manufacturing environment

CO4: Generate robot program for material handling applications

CO5: Execute / Simulate programs for various applications in manufacturing by using robot programming.



| 1020235545 | Industrial Robotics | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 1 | 0 | 4 | 3 |

# **Pre-requisites**

Knowledge of Basic Robot Engineering, Robot software, Robot programming .

#### CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   |     |     | 2   |     |     | 1   |
| C02     | 3   |     |     | 2   |     |     | 1   |
| C03     | 3   |     |     | 2   |     |     | 1   |
| C04     | 3   |     |     | 2   |     |     | 1   |
| CO5     | 3   |     |     | 2   |     |     | 1   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy

Active Learning: Activities for active learning can include think-pair-share strategies as well as kin-esthetic learning environment. Teachers can start a discussion to make sure students take ownership over their own participation and talk through new ideas and skills with peers. Teachers guide students as they construct their own knowledge and understanding.

Hands-on-Training: Conduct demonstrations and hands on training is all about applying the knowledge you have learned in training into practice.

Real time Learning: Instructors encourage the students to implement the techniques in their own place / Lab through the Industry-Institute interactions.



| 1020235545 | Industrial Robotics | L | Т | Р | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 1 | 0 | 4 | 3 |

#### Assessment Methodology:

|                | Co        | ontinuous Asses | sment (40 mark | (s)           | End           |
|----------------|-----------|-----------------|----------------|---------------|---------------|
|                |           |                 |                |               | Semester      |
|                | CA1       | CA2             | CA3            | CA4           | Examination   |
|                |           |                 |                |               | (60 marks)    |
| Mada           | Practical | Practical       | Written Test   | Practical     | Practical     |
| wode           | Test      | Test            | Theory         | Test          | Examination   |
| Portion        | Cycle I   |                 | All Portions   |               | All Exercises |
| FUILION        | Exercises | Exercises       | All Foltions   | All LACICISES | Experiments   |
| Duration       | 2 Periods | 2 Periods       | 3 Hours        | 3 Hours       | 3 hours       |
| Exam Marks     | 60        | 60              | 100            | 100           | 100           |
| Converted to   | 10        | 10              | 15             | 15            | 60            |
| Marks          | 10        | 10              | 10             | 10            | 00            |
| Marks          | 1         | 0               | 15             | 15            | 60            |
| Internal Marks |           |                 |                |               |               |
| Tentative      | 7th Wook  | 1/th Wook       | 15th Wook      | 16th Wook     |               |
| Schedule       |           |                 |                | TOUTWEEK      |               |

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total



| 1020235545 | Industrial Robotics | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 1 | 0 | 4 | 3 |

marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

### The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook / printed manual / file. The Steps, Procedure, Sketch and Result should be written by the student manually. The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| PART | DESCRIPTION                               | MARKS |
|------|-------------------------------------------|-------|
| Α    | Step / Procedure                          | 10    |
| В    | Write Program                             | 20    |
| C    | Edit Program / Simulate / Execution       | 20    |
|      | TOTAL                                     | 50    |
| D    | Practical Documents (As per the portions) | 10    |
|      |                                           | 60    |

#### SCHEME OF EVALUATION

Cycle - I Exercise 1, 2, 3, 4 and 5.

Cycle - II Exercise 6, 7, 8, 9, 10 and 11.

• CA 3: Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.

### **Question pattern – Written Test Theory**



| 1020235545 | Industrial Robotics | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 1 | 0 | 4 | 3 |

| Description |                                      | Marks        |          |  |
|-------------|--------------------------------------|--------------|----------|--|
| Part – A    | 30 MCQ Questions.                    | 30 X 1 Mark  | 30 Marks |  |
| Part – B    | 7 Questions to be answered out of 10 | 7 X 10 Marks | 70 Marks |  |
|             | Questions.                           |              |          |  |
|             | 100 Marks                            |              |          |  |

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

### SCHEME OF EVALUATION

### Model Practical Examination - Practical Exam

| PART | DESCRIPTION                         | MARKS  |
|------|-------------------------------------|--------|
| Α    | Step / Procedure                    | 10     |
| В    | Write Program                       | 20     |
| С    | Edit Program / Simulate / Execution | 20     |
| D    | Result / Finish / Accuracy          | 10     |
| E    | Written Test                        | 30     |
| F    | Viva Voce                           | 10     |
|      | TOTA                                | AL 100 |

Note: For the written test 30 MCQ shall be asked from the theory portions.



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

15

# Syllabus contents

Introduction – Definitions of Robot -Robot Anatomy – Basic configuration of Robotics – Robot Components – Manipulator, End effecter, Driving system, Controller and Sensors. Mechanical arm –

Degrees of freedom – Links and joints – Types of joints – Joint notation scheme – Pitch, Yaw, Roll – Classification of robots – Work envelope, Work Volume.

Robot controller – Configuration - Four types of controls – Open loop and closed loop controls – Speed of response and stability – Precision of movements: Spatial resolutions, accuracy and repeatability. Pneumatic drives – Hydraulic drives – Mechanical drives – Electrical drives – Stepper motors, DC Servo motors and AC Servo motors – Salient features – Applications and Comparisons of Drives. End effecters –Grippers – Mechanical Grippers, Magnetic Grippers, Vacuum Grippers, Two fingered and Three fingered Grippers, Internal and External Grippers,

- End Of Arm Tooling (EOAT)- Selection and Design considerations

Robot applications – Material handling – Press loading and unloading –Die casting – Machine tool loading and unloading – Spot welding – Arc welding – Spray painting – Assembling – Finishing – Automatic Guided Vehicle – Adopting robots to workstations – Requisite robot characteristics and Non requisite robot characteristics – Stages in selecting robots for industrial applications – Safety considerations for robot operations – Robotics in the future and characteristics task–Economical analysis of robots – Social implications.

# Practice

Study of Robot system, Study and practice in the robot simulation software .



DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 REGULATION 2023 6

| 1020235545 | Industrial Robotics | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 1 | 0 | 4 | З |

#### **Practical Exercise**

| Ex.No                 | Name of the Experiment                                              |    |  |
|-----------------------|---------------------------------------------------------------------|----|--|
| 1.                    | Programming using Position recording using Cartesian co-ordinate    | 4  |  |
|                       | system - (No. of positions – 9).                                    |    |  |
| 2.                    | Programming using Position recording using Polar co-ordinate system |    |  |
|                       | - (No. of positions - 9).                                           | 4  |  |
| 3.                    | Programming using Loops and sub – routine.                          | 4  |  |
| 4.                    | Pick and place of objects (No. of objects to be specified- 6).      | 4  |  |
| 5.                    | Pick and stack of objects (No. of objects to be specified- 6).      | 4  |  |
| б.                    | Arc welding practice(Length. of weld to be specified).              | 4  |  |
| 7.                    | Programming using Spot welding practice - (No. of spots Minimum 3). | 4  |  |
| 8.                    | Assembling practice (Simple assembling).                            | 4  |  |
| 9.                    | Profile cutting practice (combination of lines and arcs).           | 4  |  |
| 10.                   | Programming for Spray painting practice - (Area - 300mm x 300mm).   | 4  |  |
| 11.                   | Programming using Machine loading and unloading practice with time  | 4  |  |
|                       | delay.                                                              |    |  |
| Revision + Assessment |                                                                     | 10 |  |
|                       | 75                                                                  |    |  |

### Textbook:

- Mikell P Groover, Mitchell Weiss, Roger N Nagel, Nicholas Odrey, and Ashish Dutta, Industrial Robotics – Technology, Programming and Applications, 2nd Edition, McGraw Hill, 2013.
- 2. Appuu Kuttan, Robotics, I.K. International Publishing House Pvt. Limited, 2013
- Ganesh S. Hegde, A Textbook of Industrial Robotics, Second Edition, Laxmi Publications (P) Ltd., 2015
- 4. Nagarajan Ramachandran, Introduction to Industrial Robotics, Pearson India Education Services Pvt. Ltd., 2016


| 1020235545 | Industrial Robotics | L | Т | Р | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 1 | 0 | 4 | 3 |

### Website links for reference:

- https://www.youtube.com/playlist?list=PLyqSpQzTE6M\_XM9cvjLL0\_Azt1FkgPhpH
- https://www.youtube.com/playlist?list=PLFW6IRTa1g81AGU0ky\_xVhNVsudGwZxsY

### LIST OF EQUIPMENTS

- 1. Robot simulation software or Robotic arm
- 2. Computer 30 Nos.

## **END SEMESTER EXAMINATIONS - PRACTICAL EXAM**

### Note:

All the exercises/experiments should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

## SCHEME OF EVALUATION

| PART | DESCRIPTION                         | MARKS |
|------|-------------------------------------|-------|
| Α    | Step / Procedure                    | 10    |
| В    | Write Program                       | 20    |
| С    | Edit Program / Simulate / Execution | 20    |
| D    | Result / Finish / Accuracy          | 10    |
| E    | Written Test (Theory Portions)      | 30    |
| F    | Viva Voce                           | 10    |
|      | TOTAL                               | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



| 1020235546 | HVAC Systems and Components | L | Т | Ρ | С |
|------------|-----------------------------|---|---|---|---|
| PRACTICUM  |                             | 1 | 0 | 4 | 3 |

### Introduction:

To impart knowledge about HVAC system components, handling the components and testing the performance is very much needed. This content would be useful to select the various types of components to be used in HVAC systems with different capacities. The knowledge about VFD compressors and capacity calculation of cooling coils is very essential in the present scenario.

### **Course Objectives:**

The objective of this course is to enable the student to

- Practice, set and adjust the LP and HP cut-out, TEV and thermostat in refrigeration systems.
- Test the capacitor and selector switch for its working.
- Test the pumping capacity of sealed compressor.
- Determine the capacity of fan and evaporator coil of window air conditioner.
- Determine the capacity of air cooled condenser of split air conditioner.
- Determine the range, approach and efficiency of cooling tower.

#### **Course Outcomes**

After successful completion of this course, the students should be able to,

CO1: Explain the construction and working of compressor and condenser.

- CO2: Explain the functions of expansion valve and evaporator.
- CO3: Describe the different components in the HVAC system.
- CO4: Demonstrate the various processes of HVAC system.
- CO5: Demonstrate the electrical components used in HVAC system.

### **Pre-requisites:**

Basic knowledge of HVAC Components.



| 1020235546 | HVAC Systems and Components | L | Т | Ρ | С |
|------------|-----------------------------|---|---|---|---|
| PRACTICUM  |                             | 1 | 0 | 4 | 3 |

## CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   |     |     | 3   |     |     |     |
|         |     |     |     |     |     |     |     |
| C02     | 3   |     |     | 3   |     |     |     |
| C03     | 3   |     |     | 3   |     |     |     |
| C04     | 3   |     |     | 3   |     |     |     |
| C05     | 3   |     |     | 3   |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

### Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their learning confidence.
- To help students learn and appreciate numerous concepts and principles in each area, teachers should provide examples from daily life, realistic situations, and real-world engineering and technological applications.
- The demonstration can make the subject exciting and foster in the students a scientific mindset. Student activities should be planned on all the topics.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- All demonstrations/Hand-on practices are under a simulated environment (may be followed by a real environment as far as possible).



### **Assessment Methodology:**

|              | Co        | ontinuous Asses    | sment (40 mark            | (s)       | End           |
|--------------|-----------|--------------------|---------------------------|-----------|---------------|
|              |           |                    |                           |           | Semester      |
|              | CA1       | CA2                | CA3                       | CA4       | Examination   |
|              |           |                    |                           |           | (60 marks)    |
| Mada         | Practical | Practical          | Written Test              | Practical | Practical     |
| WOUE         | Test      | Test               | Theory                    | Test      | Examination   |
| Portion      | Cycle I   | Cycle II           | All Portions              |           | All Exercises |
| FOLION       | Exercises | Exercises          | Air Ortions Air Exercises |           | Experiments   |
| Duration     | 2 Periods | 2 Periods          | 3 Hours                   | 3 Hours   | 3 hours       |
| Exam Marks   | 60        | 60                 | 100                       | 100       | 100           |
| Converted to | 10        | 10                 | 15                        | 15        | 60            |
| Marks        | 10        | 10                 | 10                        | 10        | 00            |
| Marks        | 1         | 0                  | 15                        | 15        | 60            |
| Tentative    | 7th Week  | 1 <i>4</i> th Week | 15th Week                 | 16th Week |               |
| Schedule     |           |                    | I JULI WOOK               |           |               |

Note:

**CA1 and CA2:** All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.



| 1020235546 | HVAC Systems and Components  | L | Т | Ρ | С |
|------------|------------------------------|---|---|---|---|
| PRACTICUM  | Trade Systems and components | 1 | 0 | 4 | 3 |

### The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice.

The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook / printed manual / file. The Steps, Procedure, Sketch and Result should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| PART | DESCRIPTION                                                    | MARKS |
|------|----------------------------------------------------------------|-------|
| Α    | Aim / Procedure                                                | 10    |
| В    | Tools required / Observation                                   | 20    |
| С    | Diagrams / Tabulation and calculation /<br>Setting / Adjusting | 20    |
|      | TOTAL                                                          | 50    |
| D    | Practical Documents (As per the portions)                      | 10    |
|      |                                                                | 60    |

#### SCHEME OF EVALUATION

Cycle - I Exercise 1, 2, 3, 4, 5 and 6.

Cycle - II Exercise 7, 8, 9, 10, 11 and 12.

**CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



| 1020235546 | HVAC Systems and Components | L | Т | Ρ | С |
|------------|-----------------------------|---|---|---|---|
| PRACTICUM  | Trac Systems and components | 1 | 0 | 4 | 3 |

### **Question pattern – Written Test Theory**

| Description |                                                 | Mar          | ks        |
|-------------|-------------------------------------------------|--------------|-----------|
| Part – A    | 30 MCQ Questions.                               | 30 X 1 Mark  | 30 Marks  |
| Part – B    | 7 Questions to be answered out of 10 Questions. | 7 X 10 Marks | 70 Marks  |
| TOTAL       |                                                 |              | 100 Marks |

**CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

### SCHEME OF EVALUATION

#### Model Practical Examination - Practical Exam

| PART | DESCRIPTION                             | MARKS |
|------|-----------------------------------------|-------|
| Α    | Aim / Procedure                         | 10    |
| В    | Tools required / Observation            | 20    |
| С    | Diagrams / Tabulation and calculation / | 20    |
|      | Setting / Adjusting                     |       |
| D    | Result / Report                         | 10    |
| E    | Written Test                            | 30    |
| F    | Viva Voce                               | 10    |
|      | TOTAL                                   | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.

#### Syllabus Contents

| Unit 1                                                                        | Compressor                                                                |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| Compresso                                                                     | r – Introduction - functions of a compressor – Classification - open type |  |
| reciprocating compressor – Hermetically sealed compressors – construction and |                                                                           |  |
| working                                                                       |                                                                           |  |



| 1020235546 | HVAC Systems and Components | L | Т | Ρ | С |
|------------|-----------------------------|---|---|---|---|
| PRACTICUM  |                             | 1 | 0 | 4 | 3 |

| Unit II                                                                               | Condenser                                                                   |   |  |  |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---|--|--|
| Condenser                                                                             | - Introduction – Functions ––Classification of condensers – Air cooled      |   |  |  |
| condenser,                                                                            | Water cooled condenser - Construction and Working                           | 3 |  |  |
| Unit III Expansion device                                                             |                                                                             |   |  |  |
| 3.1 Expans                                                                            | sion devices- Introduction – Functions – Types of expansion devices         |   |  |  |
| -Capillary                                                                            | tube, Automatic expansion valve, Thermostatic expansion valve -             | 3 |  |  |
| Constructio                                                                           | n and working only.                                                         |   |  |  |
| Unit IV                                                                               | Evaporator                                                                  |   |  |  |
| Evaporator                                                                            | - Introduction – Functions - Types of evaporators – Bare tube coil          | З |  |  |
| evaporators                                                                           | - Finned evaporators – Construction and working only.                       |   |  |  |
| Unit V                                                                                | HVAC System Controls and Fans                                               |   |  |  |
| 5.1 Motor                                                                             | Operating Components: Selector switch – OLP – Relay – Capacitor –           | 3 |  |  |
| Starting, Ru                                                                          | nning. System Controls: LP, HP cutout –– Humidity control – Thermostat      |   |  |  |
| switch – Solenoid valve.                                                              |                                                                             |   |  |  |
| 5.2 Fans – Introduction - function of fans - Types of fans - centrifugal fans - Axial |                                                                             |   |  |  |
| flow fan – F                                                                          | Propeller fan, Tube axial fan and vane axial fan – Construction and working |   |  |  |
| only.                                                                                 |                                                                             |   |  |  |

| Practical E | Exercise                                                               |         |
|-------------|------------------------------------------------------------------------|---------|
| Ex. No      | Name of the Exercise                                                   | Periods |
| 1           | Charging of Refrigerant in a refrigeration System                      | 4       |
| 2           | Pump down of refrigerant from the refrigeration System                 | 4       |
| 3           | Find out the leak in the refrigeration System and rectify the defect   | 4       |
| 4           | Charging of oil in the refrigeration System                            | 4       |
| 5           | Setting and Adjusting the thermostat.                                  | 4       |
| 6           | Setting and Adjusting of low pressure and High pressure cut out in VCR | 4       |
|             | system.                                                                |         |



| 1020235546 | HVAC Systems and Components | L | Т | Ρ | С |
|------------|-----------------------------|---|---|---|---|
| PRACTICUM  |                             | 1 | 0 | 4 | 3 |

| 7  | Setting and Adjusting of thermostatic expansion valve.                                   | 4  |
|----|------------------------------------------------------------------------------------------|----|
| 8  | Testing the pumping capacity of a sealed compressor.                                     | 4  |
| 9  | Testing and Replacement of faulty capacitor and selector switch.                         | 4  |
| 10 | Determination of capacity of fan.                                                        | 4  |
| 11 | Determination of capacity of evaporator coil of window / Split Air conditioner           | 4  |
| 12 | Determination of capacity of air cooled condenser of a Window / Split<br>Air conditioner | 4  |
|    | Revision + Test                                                                          | 12 |
|    | Total                                                                                    | 75 |

### Suggested List of Students Activity:

- 1. Prepare/Download a specification of the following:
- 2. Various tools, Equipments and controls used in HVAC systems
- 3. Presentation / seminar by students on HVAC systems

### **TEXT BOOKS and REFERENCES**

- 1. ASHRAE Hand Book Heating, ventilating and Air-conditioning systems and equipment.
- 2. The Institute of Plumbing Plumbing Engineering Services Design Guide.
- Principles of Electrical and Engineering and Electronics by V.K.Mehta and Rohit Mehta.

### Web-based/Online Resources:

- https://youtu.be/IKn3c7Sup9k?si=eWDXDgmNGB-RnGs7
- https://youtu.be/PjcdqAkP0UA?si=lk-us0HFvDgver4M
- https://youtu.be/QgVnRsdoxwQ?si=uf3JHI\_hqwK2nkRR
- https://youtu.be/6YiCjnjLKH8?si=SSc125M7ZIDARi9t



| 1020235546 | HVAC Systems and Components | L | Т | Ρ | С |
|------------|-----------------------------|---|---|---|---|
| PRACTICUM  |                             | 1 | 0 | 4 | 3 |

### END SEMESTER EXAMINATIONS - PRACTICAL EXAM

## Note:

All the exercises/experiments should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

| PART | DESCRIPTION                             | MARKS |
|------|-----------------------------------------|-------|
| Α    | Aim / Procedure                         | 10    |
| В    | Tools required / Observation            | 20    |
| С    | Diagrams / Tabulation and calculation / | 20    |
|      | Setting / Adjusting                     |       |
| D    | Result / Report                         | 10    |
| E    | Written Test                            | 30    |
| F    | Viva Voce                               | 10    |
|      | TOTAL                                   | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.

### Equipment / Facilities required to conduct the Practical Course.

| Sl.No | Equipments                                                            | Nos |
|-------|-----------------------------------------------------------------------|-----|
| 01    | VCR experimental setup with thermostat, LP HP cutouts and TEV         | 1   |
| 02    | Sealed compressor and gauge manifold set                              | 1   |
| 03    | Experimental setup for testing capacitor and selector switch          | 1   |
| 04    | Experimental setup for determining capacity of fan and anemometer     | 1   |
| 05    | Window air conditioner experimental setup for finding the capacity of | 1   |
|       | evaporator                                                            |     |
| 06    | Split air conditioner experimental setup for finding the capacity of  | 1   |
|       | air cooled condenser                                                  |     |
| 07    | Cooling tower experimental setup                                      | 1   |



| 1020235547 | Automobile Technology | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| PRACTICUM  |                       | 1 | 0 | 4 | 3 |

### Introduction:

Automobiles are one of the key areas of development in India facilitated by Multinational Companies. As automobiles are the Major sources of employing man power a thorough knowledge on Automobile Engine construction and its functioning is required with due consideration on pollution control.

### **Course Objectives:**

- Explain about the constructional details of an Automobile engine including cooling and lubrication system.
- Describe fuel feed systems for petrol and diesel engines with all devices involved in it.
- Explain the construction and functional features of the power transmission systems and various parts involved in it.
- Explain the functions of different types of steering, suspension and brake systems.
- Describe the different types of chassis and their functions.
- Familiarize electrical and electronic equipment used in automobiles.
- To understand the emerging trends of electric vehicles, hybrid electric vehicles and solar vehicles.
- To know the automobile emissions and its effects on the environment.

### **Course Outcomes**

On successful completion of this course, the student will be able to

CO1: Explain the principles of cooling and lubrication systems for an IC engine

CO2: Describe fuel feed systems for petrol and diesel engines with all its components.

CO3:Illustrate the types of steering, suspension and brake systems based on the functions

CO4: Classify the types of Automobile Chassis and its sub systems based on their applications.

CO5: Explore the various Electrical Equipments used in an automobile system

### Pre-requisites:

Basic knowledge about internal combustion engines.



| 1020235547 | Automobile Technology | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| PRACTICUM  | ,                     | 1 | 0 | 4 | 3 |

## CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | -   | -   | 3   | -   | -   | 1   |
| C02     | 3   | -   | -   | 3   | -   | -   | 1   |
| C03     | 3   | -   | -   | 3   | -   | -   | 0   |
| C04     | 3   | -   | -   | 3   | -   | -   | 1   |
| C05     | 3   |     |     | 3   | -   | -   | 1   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

### Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyse potential sources of error in case of discrepancies



| 1020235547 | Automobile Technology | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| PRACTICUM  | ,                     | 1 | 0 | 4 | 3 |

### Assessment Methodology:

|                | Co           | ontinuous Asses | sment (40 mark | (s)           | End           |  |
|----------------|--------------|-----------------|----------------|---------------|---------------|--|
|                |              |                 |                |               | Semester      |  |
|                | CA1          | CA2             | CA3            | CA4           | Examination   |  |
|                |              |                 |                |               | (60 marks)    |  |
| Mada           | Practical    | Practical       | Written Test   | Practical     | Practical     |  |
| WOUE           | Test         | Test            | Theory         | Test          | Examination   |  |
| Portion        | Cycle I      | Cycle II        | All Portions   |               | All Exercises |  |
| FOLION         | Exercises    | Exercises       | AILLOLIOUS     | All LACICISCS | Experiments   |  |
| Duration       | 2 Periods    | 2 Periods       | 3 Hours        | 3 Hours       | 3 hours       |  |
| Exam Marks     | 60           | 60              | 100            | 100           | 100           |  |
| Converted to   | 10           | 10              | 15             | 15            | 60            |  |
| Marks          | 10           | 10              | 15             | 15            | 00            |  |
| Marks          | 1            | 0               | 15             | 15            | 60            |  |
| Internal Marks | mal Marks 40 |                 |                |               |               |  |
| Tentative      | 7th Week     | 1/Ith Week      | 15th Week      | 16th Week     |               |  |
| Schedule       |              |                 | I JUI WEEK     | TOUTWEEK      |               |  |

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total



| 1020235547 | Automobile Technology | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| PRACTICUM  |                       | 1 | 0 | 4 | 3 |

marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

### The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice.

The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook / printed manual / file. The Steps, Procedure, Sketch and Result should be written by the student manually.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DOTE Official.

| PART | DESCRIPTION                                  | MARKS |
|------|----------------------------------------------|-------|
| Α    | Procedure / Sketch / Setting / Tool Handling | 20    |
| В    | B Alignment test / Dismantling / Assembling  |       |
| С    | Troubles / Report / Test Chart               | 10    |
|      | TOTAL                                        | 50    |
| D    | Practical Documents (As per the portions)    | 10    |
|      |                                              | 60    |

### SCHEME OF EVALUATION

Cycle - I Exercise 1, 2, 3, 4, 5 and 6.

Cycle - II Exercise 7, 8, 9, 10, 11 and 12.

• **CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



| 1020235547 | Automobile Technology | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| PRACTICUM  |                       | 1 | 0 | 4 | 3 |

### **Question pattern – Written Test Theory**

| Description |                                      | Marks        |           |  |
|-------------|--------------------------------------|--------------|-----------|--|
| Part – A    | 30 MCQ Questions.                    | 30 X 1 Mark  | 30 Marks  |  |
| Part – B    | 7 Questions to be answered out of 10 | 7 X 10 Marks | 70 Marks  |  |
|             | Questions.                           |              |           |  |
|             | TOTAL                                |              | 100 Marks |  |

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

### SCHEME OF EVALUATION

### **Model Practical Examination - Practical Exam**

| PART | DESCRIPTION                                    | MARKS |
|------|------------------------------------------------|-------|
| Α    | Aim & Tools required                           | 10    |
| В    | B Procedure / Sketch / Setting / Tool Handling |       |
| С    | Alignment test / Dismantling / Assembling      | 20    |
| D    | Troubles / Report / Test Chart                 | 10    |
| E    | Written Test                                   | 30    |
| F    | Viva Voce                                      | 10    |
|      | TOTAL                                          | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



| 1020235547 | Automobile Technology | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| PRACTICUM  |                       | 1 | 0 | 4 | 3 |

# Syllabus Contents

| Theory Portion - Unit I                                                             |    |
|-------------------------------------------------------------------------------------|----|
| Automobile Engines Basic Engine Components and its functions, Cooling systems       | 2  |
| – purpose – types. Lubrication systems – purpose.                                   |    |
| Practical Exercises                                                                 | 8  |
| Exercise 1: Dismantling and assembling a four stroke petrol engine and              |    |
| identification of parts.                                                            |    |
| Exercise 2: Removing camshaft, replacing timing gears, removing valves, lapping     |    |
| and adjusting valve clearance.                                                      |    |
| Theory Portion - Unit II                                                            |    |
| Types of fuel feed systems- S.U. Electrical fuel pump - petrol injection. Layout of | 2  |
| diesel and petrol fuel feed system CRDI system - fuel injectors                     |    |
| Practical Exercises                                                                 | 12 |
| Exercise 3: Removing, servicing and replacing of fuel pump, oil pump & water        |    |
| pump.                                                                               |    |
| Exercise 4: Removing, servicing & replacing MPFI system.                            |    |
| Exercise 5: Dismantling and assembling of inline fuel injection pump / CRDI         |    |
| system.                                                                             |    |
| Theory Portion - Unit III                                                           |    |
| Transmission And Power Trains General arrangement of power transmission             | 4  |
| system -clutch – function – Components – Types - Single plate and multi plate –     |    |
| Clutch troubles and their causes. Gear box – purpose-constant mesh and              |    |
| synchromesh-gear box troubles and their causes. Drive line – propeller shaft –      |    |
| Universal joint –                                                                   |    |
| . Differential – purpose – Construction and operation                               |    |
| Practical Exercises                                                                 | 8  |
| Exercise 6: Removing and replacing of pressure plate and clutch plate, fingers      |    |
| adjustment                                                                          |    |



| 1020235547 | Automobile Technology | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| PRACTICUM  |                       | 1 | 0 | 4 | 3 |

| <b>Exercise 7:</b> Dismantling, inspecting and assembling of constant mesh gear box and |    |
|-----------------------------------------------------------------------------------------|----|
| find out the gear ratios.                                                               |    |
| Theory Portion - Unit IV                                                                |    |
| Automobile Chassis Front axle – Types– Steering gears. Suspension system –              | 3  |
| Functions – Type of springs Brake system – functions – ABS.                             |    |
| Practical Exercises                                                                     | 4  |
| <b>Exercise 8:</b> Dismantling, assembling and adjusting of steering gear box.          |    |
| Theory Portion - Unit V                                                                 |    |
| Electrical Equipment & Hybrid Electric Vehicles Battery – lead acid battery – Nickel    | 4  |
| alkaline battery – construction and operation of starter motor. Ignition system –       |    |
| Types – High tension magneto – electronic ignition – Ignition system troubles and       |    |
| remedies. Lighting system - Horn circuits – Wind screen wiper.                          |    |
| Practical Exercises                                                                     | 16 |
| Exercise 9: Test a battery with specific gravity test and charge the battery with       |    |
| constant amperage / voltage method.                                                     |    |
| Exercise 10: Dismantling, overhauling and assembling of starter motor / alternator      |    |
| Exercise 11: Trace the automobile electrical system with respect to battery coil        |    |
| ignition system                                                                         |    |
| Exercise 12: Trace the automobile electrical system with respect to (i) horn relay      |    |
| circuit, (ii) Wiper circuit & explain with neat circuit diagram                         |    |
| Assessment Test + Revision                                                              | 12 |
| Total                                                                                   | 75 |

### **TEXT BOOKS & REFERENCES**

- 1. A Textbook of Automobile Engineering by R.K.Rajput, Second Edition 2016, Laxmi Publications.
- 2. Automotive Mechanics, William H.crouse and Donald .L. Anglin, Tata McGraw– Hill Publishing CompanyLtd, NewDelhi.
- 3. Automotive Mechanics, Joseph Heitner, East-west Press (P) Ltd, NewDelhi



| 1020235547 | Automobile Technology | L | Т | Ρ | С |
|------------|-----------------------|---|---|---|---|
| PRACTICUM  |                       | 1 | 0 | 4 | 3 |

### **END SEMESTER EXAMINATIONS - PRACTICAL EXAM**

### Note:

All the exercises/experiments should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

| PART | DESCRIPTION                                  | MARKS |
|------|----------------------------------------------|-------|
| А    | Aim & Tools required                         | 10    |
| В    | Procedure / Sketch / Setting / Tool Handling | 20    |
| С    | Alignment Test / Dismantling / Assembling    | 20    |
| D    | Troubles / Report / Test Chart               | 10    |
| E    | Written Test                                 | 30    |
| F    | Viva Voce                                    | 10    |
|      | TOTAL                                        | 100   |

### SCHEME OF EVALUATION

Note: For the written test 30 MCQ shall be asked from the theory portions.

#### Equipment / Facilities required to conduct the Practical Course.

- 1. Automobile Mechanic's tools-Complete Set
- 2. Internal circlip plier, bearing puller
- 3. Feeler gauge to check valve clearance, hammer and accessories
- 4. Compressor to supply high pressure air to clean oil and water filters.
- 5. 4 stroke petrol engine with all accessories
- 6. 4 stroke Diesel engine with all accessories
- 7. Engine cylinder with liner and cylinder bore dial gauge
- 8. Oil pump and water pump.
- 9. MPFI and CRDI kit
- 10. Inline Fuel Injection Pump and Injectors
- 11. Clutch set arrangement with tools
- 12. Complete gear box with tools
- 13. Complete steering arrangement
- 14. Battery and charging set up.
- 15. Measuring instruments
- 16. Consumables Sufficient quantity.



| 1020235654 | Innovation & Startun | L | Т | Ρ | С |
|------------|----------------------|---|---|---|---|
| PRACTICUM  | innovation & Startup | 1 | 0 | 2 | 2 |

#### Introduction

The integration of Innovation and Start-ups concept within the syllabus is testament to the forward thinking nature of educational institutions. By introducing this concept, students are provided with a solid foundation upon which they can build their skills in Innovation and Start-ups. This course can bridge the gap between theory and practice. It allows students to apply the knowledge they have acquired in a real world context, thereby enhancing their understanding and retention of the above concept. This experimental learning approach not only fosters a deeper level of engagement but also trains student with practical skills necessary to navigate the complexities of the business world. This also empowers students to become an Innovator or Entrepreneur. With necessary tools and knowledge, educational institutions are preparing the next generation of entrepreneurs to tackle the challenges and opportunities that lie ahead. This syllabus will explore the different facets of innovation, including its importance, types and strategies for fostering a culture of innovation within organizations

#### **Course Objectives**

The objective of this course is to enable the students

- o To understand the concept of Innovation and Start-ups.
- o To acquire knowledge of Prototype development, IPR, Patents and Copyrights.
- o To have practical experience in preparing Business plan for Start-ups.
- o To visit the existing nearby industry to prepare a project report about the present challenges of that industry.
- o To know the different funding supports available from Government and Non-Government schemes for Start-ups.



| 1020235654 | Innovation & Startun | L | Т | Ρ | С |
|------------|----------------------|---|---|---|---|
| PRACTICUM  | innovation & Startup | 1 | 0 | 2 | 2 |

#### **Course Outcomes**

After successful completion of this course, the students should be able to

CO 1: Differentiate between Innovation and Start-ups

CO 2: Explain the importance of IPR, Patents and Copyrights.

CO 3: Describe the methodology to be adopted for preparing the Business Plan

CO 4: Gain practical experience by Industrial training and visiting the nearby industry

Co 5: Explore and identify various funding facilities available from Government and Non-Government Schemes for Start-ups

#### Pre-requisites:

There are no specific prerequisites for this course, although a basic understanding of business and technology concepts would be beneficial.

| C0 / P0 | P01 | P02 | P03 | PO4 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | -   | -   | 1   | -   | 2   | 3   | 3   |
| C02     | -   | -   | 1   | -   | 2   | 3   | 3   |
| C03     | -   | -   | 1   | -   | 2   | 3   | 3   |
| C04     | -   | -   | 1   | -   | 2   | 3   | 3   |
| C05     | -   | -   | 1   | -   | 2   | 3   | 3   |

### CO/PO Mapping

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation



| 1020235654 | Innovation & Startun | L | Т | Ρ | С |
|------------|----------------------|---|---|---|---|
| PRACTICUM  | innovation & Startup | 1 | 0 | 2 | 2 |

## Assessment Methodology

|              | Continuo                                    | l0 marks)                             | End Semester                                                  |                                       |
|--------------|---------------------------------------------|---------------------------------------|---------------------------------------------------------------|---------------------------------------|
|              | CA1                                         | CA2                                   | CA3                                                           | Examination<br>(60 marks)             |
| Mode         | Class Assessment<br>(Unit I, II & Unit III) | Seminar<br>Presentations<br>(Unit IV) | Submission of<br>Industry Visit<br>Project Report<br>(Unit V) | Practical<br>Examination<br>(Project) |
| Duration     | 2 hours                                     |                                       |                                                               | 3 hours                               |
| Exam Marks   | 50                                          | 20                                    | 30                                                            | 100                                   |
| Converted to | 10                                          | 10                                    | 20                                                            | 60                                    |
| Marks        | 10                                          | 10                                    | 20                                                            | 60                                    |

## **Continuous Assessment - 40 marks**

| S. No | Description                                                       | Marks    |
|-------|-------------------------------------------------------------------|----------|
| CA 1  | Class Assessment (50 marks) - Unit - I,II & III                   | 10 marks |
|       | Written Examination - Theory Questions                            |          |
|       | 10 questions out of 15 questions (10 x 3 marks :30 marks)         |          |
|       | 4 questions out of 6 questions (4 x 5 marks : 20 marks)           |          |
| CA 2  | Seminar Presentations (20 marks- each topic carries 10 marks)     | 10 marks |
|       | - Unit IV                                                         |          |
|       | Students should present any two topics with PPTs                  |          |
| CA 3  | Submission of Industry Visit Project Report - (30 marks) - Unit V | 20 marks |
|       |                                                                   |          |
|       | Total                                                             | 40 marks |
|       |                                                                   |          |



| 1020235654 | Innovation & Startun | L | Т | Ρ | С |
|------------|----------------------|---|---|---|---|
| PRACTICUM  | innovation & Startup | 1 | 0 | 2 | 2 |

## **Syllabus Contents**

| UNIT I      | INTRODUCTION TO INNOVATION                                               |        |
|-------------|--------------------------------------------------------------------------|--------|
| An Introdu  | ction to Innovation and Creativity- Innovation in current Environment -  | 6      |
| Types of In | novation - Challenges of Innovation - Steps of Innovation Management -   |        |
| Divergent v | /s Convergent thinking - Design thinking and Entrepreneurship.           |        |
| UNIT II     | INCUBATION CLUBS, IPR, PATENTS AND COPYRIGHTS                            |        |
| Idea Gene   | ration - Incubation Clubs - Prototype Development - Marketing of         | 6      |
| Innovation  | - Management of Innovation - Creation of IPR -Types of IPR - Patents and |        |
| Copyrights  | - Patents in India - Technological and Non-Technological Innovation      |        |
| Process.    |                                                                          |        |
| UNIT III    | GOVERNMENT AND NON-GOVERNMENT FUNDING SCHEMES FOR STA                    | RT-UPS |
| An introdu  | ction to Start-up - Start-ups in India - Procedure for registration of   | 6      |
| Start-ups - | Business Model- Business Plan - Case Studies - Opportunities and         |        |
| Challenges  | - Funding supports from Government Schemes -MUDRA, TANSEED,              |        |
| NEEDS, PM   | IEGP, UYEGP – Non-Government Schemes - CSR Fund - Angel Investors -      |        |
| Venture Ca  | pitalist.                                                                |        |
| UNIT IV     |                                                                          |        |
| All the stu | dents have to select a minimum of 2 topics from the list given below.    | 9      |
| They are e  | xpected to collect the resources with the help of faculty assigned to    |        |
| them to pre | pare PPTs for presentation                                               |        |
| 1. Idea     | a Generation.                                                            |        |
| 2. Inno     | ovation Management.                                                      |        |
| 3. Pro      | duct Development.                                                        |        |



| 1020235654                                       | Innovation & Startun | L | Т | Ρ | С |
|--------------------------------------------------|----------------------|---|---|---|---|
| PRACTICUM                                        | innovation & Startup | 1 | 0 | 2 | 2 |
|                                                  |                      |   |   |   |   |
| 4. Business Model Innovation.                    |                      |   |   |   |   |
| 5. Organizational Culture and Change Management. |                      |   |   |   |   |
| 6. Leadership and Innovation.                    |                      |   |   |   |   |

7. Barriers to Innovation.

8. Innovation Marketing.

9. E-Commerce success stories (any one).

10. Role of Start-ups in Higher Education.

- 11. Professional Networking in Building Brands.
- 12. How to start a start-up in India.

## UNIT V EXPOSURE TO INDUSTRY

| Total                                                                                | 45 |
|--------------------------------------------------------------------------------------|----|
| Manufacturing, Quality Control, Marketing, Product selling - Conclusion.             |    |
| Process flow chart, Manufacturing Methods, Process of Manufacturing, Product         |    |
| Scope of the Industry, Plant Layout and Location, Details of Plant and Machineries,  |    |
| of the Industry/Organization, Introduction of the Industry, Type of the Industry,    |    |
| start-ups etc., and select any one to prepare a project report which covers the Name |    |
| All the students should visit and study the nearby industries, incubation centres,   | 18 |
|                                                                                      |    |



| 1020235654 | Innovation & Startun | L | Т | Ρ | С |
|------------|----------------------|---|---|---|---|
| PRACTICUM  | innovation & Startup | 1 | 0 | 2 | 2 |

## End Semester Examination - Project Exam

Students should be assessed for 100 Marks both by the internal examiner and external examiner appointed by the Chairman Board of Examinations.

### Detailed Allocation of Marks

| S. No  |     | Description                                                | Marks |
|--------|-----|------------------------------------------------------------|-------|
| Part A |     | Written Examination – Unit –I,II & III                     | 45    |
|        |     | Theory Questions                                           |       |
|        | i)  | 10 questions out of 15 questions (10 x 3 marks = 30 marks) |       |
|        | ii) | 3 questions either or pattern (3 x 5 marks = 15 marks)     |       |
| Part B | i)  | Presentation of Industry Visit Project Report              | 25    |
|        | ii) |                                                            |       |
|        | ,   | Interaction and Evaluation                                 | 30    |
|        |     |                                                            |       |
|        |     | TOTAL                                                      | 100   |
| i .    |     |                                                            |       |



#### Introduction

Industrial training is a crucial component of the diploma engineering curriculum, designed to bridge the gap between theoretical knowledge and practical application. Typically conducted during vacation periods, this two-week training program provides students with hands-on experience in their respective engineering fields. The primary objectives are to enhance practical skills, familiarize students with industry standards, and prepare them for future employment.

Two-week industrial training during vacation periods is an invaluable part of diploma engineering education. It not only equips students with practical skills but also provides a comprehensive understanding of the industry, preparing them for successful engineering careers.

#### Objectives

- 1. Practical Exposure: Students gain direct exposure to real-world engineering practices, tools, and technologies.
- 2. Skill Enhancement: The training helps in developing technical and soft skills that are essential for professional growth.
- 3. Industry Insight: Students learn about the working environment, operational procedures, and challenges faced by industries.
- 4. Professional Networking: The training offers opportunities to interact with industry professionals, which can be beneficial for career prospects.
- 5. Application of Knowledge: It allows students to apply classroom knowledge to solve practical problems, enhancing their understanding and retention of engineering concepts.

#### Structure of the Training Program

- Orientation: Introduction to the company, its operations, and safety protocols.
- Project Assignment: Students are assigned specific projects or tasks relevant to their field of study.
- Supervision and Mentorship: Industry professionals guide and mentor students throughout the training.



Internship

- Skill Development Workshops: Sessions on technical skills, software tools, and industry best practices.
- Assessment and Feedback: Performance evaluations and constructive feedback to help students improve.

### **Benefits for Students**

- Enhanced Employability: Practical experience makes students more attractive to potential employers.
- Confidence Building: Working in a real-world setting boosts confidence and professional demeanor.
- Clarified Career Goals: Exposure to various roles and responsibilities helps students define their career paths.

## **Course Outcomes**

CO 1: Demonstrate proficiency in using industrial machinery, tools, and software.

CO 2: Able to identify, analyze, and solve engineering problems using industry-standard methods and practices.

CO 3: Gain a comprehensive understanding of industrial manufacturing processes, quality control, and safety practices.

CO 4: Exhibit improved communication, teamwork, and professional behavior in an industrial setting.

CO 5: Apply theoretical concepts learned in their coursework to practical engineering tasks and projects.

## Duties Responsibilities of the Faculty Mentor.

One faculty mentor should be assigned for every 30 students by the HOD / Principal. Faculty mentors shall play a crucial role in overseeing and guiding students during their industrial training program in Diploma engineering.

## Pre-Training Responsibilities:

- 1. Orientation and Preparation:
  - Conduct orientation sessions to familiarize students with the objectives, expectations, and guidelines of the industrial training program.



- Assist students in understanding the importance of industrial training in their academic and professional development.
- 2. Placement Coordination:
  - Collaborate with the placement cell or industry liaison office to secure suitable training placements for students that align with their academic specialization and career interests.
  - Facilitate communication between the institution and host organizations to ensure smooth coordination of training arrangements.
- 3. Training Plan Development:
  - Help students develop a detailed training plan outlining learning objectives, tasks, and expected outcomes for the training period.
  - Guide students in setting SMART (Specific, Measurable, Achievable, Relevant, Time-bound) goals for their training experience.

## **During Training Responsibilities:**

- 4. Monitoring and Support:
  - Regularly monitor the progress of students during their industrial training.
     Maintain communication with both students and industry supervisors to track performance and address any issues that may arise.
  - Provide ongoing support and guidance to students, offering advice on technical challenges, professional conduct, and workplace etiquette.
- 5. Technical Guidance:
  - Offer technical guidance and mentorship related to the specific engineering discipline or specialization of the students. Help them apply theoretical knowledge to practical situations encountered in the industry.
- 6. Problem-Solving Assistance:
  - Assist students in overcoming obstacles or challenges encountered during their training. Encourage them to develop problem-solving skills and resilience in real-world engineering scenarios.



- 7. Feedback and Evaluation:
  - Provide constructive feedback on students' performance based on reports, assessments, and observations gathered from industry supervisors.
  - Evaluate students' achievements in relation to their training objectives and competencies developed during the program.

### Post-Training Responsibilities:

- 8. Reflection and Debriefing:
  - Conduct debriefing sessions with students to reflect on their training experiences, discuss lessons learned, and identify areas for further improvement.
  - Help students articulate their learning outcomes and how these experiences contribute to their professional growth.
- 9. Documentation and Reporting:
  - Ensure comprehensive documentation of students' training activities, achievements, and feedback received from industry supervisors.
  - Prepare reports summarizing students' performance and submit these to relevant departments or committees for review and assessment.
- 10. Career Counseling:
  - Provide career guidance and counseling to students based on their industrial training experiences. Assist them in leveraging these experiences for future job applications or further academic pursuits.
- 11. Continuous Improvement:
  - Collaborate with industry partners to continuously improve the quality and relevance of the industrial training program.
  - Incorporate feedback from students and industry supervisors to enhance the effectiveness of future training placements.

By fulfilling these duties and responsibilities, faculty mentors contribute significantly to the overall educational experience and professional development of Diploma engineering students during their industrial training program.



Internship

### Instructions to the students

#### Before Starting Industrial Training:

#### 1. Orientation and Preparation:

- Attend orientation sessions conducted by the institution or faculty mentors to understand the objectives, expectations, and guidelines of the industrial training program.
- Familiarize yourself with the specific policies, procedures, and safety regulations of the host organization where you will be undergoing training.

#### 2. Setting Goals:

- Set clear and specific goals for your industrial training period. Define what skills, knowledge, and experiences you aim to gain during this time.
- Discuss your goals with your faculty mentor and seek their guidance in developing a training plan that aligns with your career aspirations.
- 3. Professional Attire and Conduct:
  - Dress appropriately and professionally according to the standards of the industry and host organization.
  - Maintain a positive attitude, demonstrate punctuality, and adhere to workplace etiquette and norms.

#### During Industrial Training:

- 4. Learning and Engagement:
  - Actively engage in all assigned tasks and projects. Seek opportunities to learn new skills and technologies relevant to your field of study.
  - Take initiative in asking questions, seeking clarification, and participating in discussions with supervisors and colleagues.
- 5. Adaptability and Flexibility:
  - Adapt to the work environment and demonstrate flexibility in handling various responsibilities and challenges that arise during your training.
  - Be open to different roles and tasks assigned to you, as this will broaden your experience and skill set.



- 6. Professionalism and Communication:
  - Communicate effectively with supervisors, colleagues, and clients as required. Practice clear and concise verbal and written communication.
  - Demonstrate professionalism in all interactions, respecting confidentiality, and adhering to company policies and procedures.
- 7. Safety and Compliance:
  - o Prioritize safety at all times. Familiarize yourself with safety protocols, procedures, and emergency exits in the workplace.
  - Follow all safety guidelines and regulations to ensure your well-being and that of others around you.

### After Completing Industrial Training:

- 8. Reflection and Documentation:
  - Reflect on your training experience. Evaluate what you have learned, the challenges you faced, and how you have grown professionally.
  - Maintain a journal or log documenting your daily activities, achievements, and lessons learned during the training period.
- 9. Feedback and Evaluation:
  - Seek feedback from your industry supervisor and faculty mentor on your performance and areas for improvement.
  - Use constructive feedback to enhance your skills and competencies for future career opportunities.
- 10. Career Planning:
  - Use your industrial training experience to inform your career planning and decision-making process.
  - Discuss your career goals and aspirations with your faculty mentor or career counselor for guidance on next steps after completing your diploma.

By following these instructions, Diploma engineering students can make the most of their industrial training experience, gain valuable insights into their chosen field, and prepare themselves effectively for future professional endeavors.



## DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 **REGULATION 2023**

2

Internship

## **Attendance Certification**

Every student has to get their attendance certified by the industrial supervisor in the prescribed form supplied to them. Students have also to put their signature on the form and submit it to the institution faculty mentor.

## **Training Reports**

The students have to prepare reports: The report in the form of a diary to be submitted to the concerned faculty mentor of the institution. This will be reviewed while awarding Internal assessment.

## Industrial Training Diary

Students are required to maintain the record of day-to-day work done. Such a record is called Industrial training Diary. Students have to write this report regularly. All days for the week should be accounted for clearly giving attendance particulars (Presence, absence, Leave, Holidays etc.). The concern of the Industrial supervisor is to periodically check these progress reports.

In addition to the diary, students are required to submit a comprehensive report on training with details of the organisation where the training was undergone after attestation by the supervisors. The comprehensive report should incorporate study of plant / product / process / construction along with intensive in-depth study on any one of the topics such as processes, methods, tooling, construction and equipment, highlighting aspects of quality, productivity and system. The comprehensive report should be completed in the last week of Industrial training. Any data, drawings etc. should be incorporated with the consent of the Organisation.



| 1020235773 |
|------------|
|------------|

Internship

### Scheme of Evaluation

### Internal Assessment

Students should be assessed for 40 Marks by industry supervisor and polytechnic faculty mentor for the Internal Assessment.

| SI. No. | No. Description                                                                               |    |
|---------|-----------------------------------------------------------------------------------------------|----|
| А       | Punctuality and regularity. (Attendance)                                                      | 10 |
| В       | Level / proficiency of practical skills acquired.<br>Initiative in learning / working at site | 10 |
| С       | Self expression / communication skills.<br>Interpersonal skills / Human Relation.             | 10 |
| D       | Report and Presentation.                                                                      | 10 |
|         | Total                                                                                         | 40 |

### End Semester Examination - Project Exam

Students should be assessed for 100 Marks both by the internal examiner and external examiner appointed by the Chairman Board of Examinations after the completion of industrial training. The marks scored will be converted to 60 marks for the End Semester Examination.

| Scheme | of | Eva | luation |
|--------|----|-----|---------|
|--------|----|-----|---------|

| SI. No. | Description                                                                                              | Marks |
|---------|----------------------------------------------------------------------------------------------------------|-------|
| А       | Daily Activity Report and Attendance certificate.                                                        | 20    |
| В       | Comprehensive report on Internship, Relevant<br>Internship Certificate from the concerned<br>department. | 30    |
| С       | Presentation by the student at the end of the Internship.                                                | 30    |
| D       | Viva Voce                                                                                                | 20    |
|         | Total                                                                                                    | 100   |



### Introduction

Every student must do one mini project in the sandwich diploma program. Students can do their project in Industry or R&D Lab or in-house or a combination of any two for the partial fulfillment for the award of Diploma in Engineering.

For the project works, the Department will constitute a three-member faculty committee to monitor the progress of the project and conduct reviews regularly.

If the projects are done in-house, the students must obtain the bonafide certificate for project work from the Project supervisor and Head of the Department, at the end of the semester. Students who have not obtained the bonafide certificate are not permitted to appear for the Project Viva Voce examination.

For the projects carried out in Industry, the students must submit a separate certificate from Industry apart from the regular bonafide certificate mentioned above. For Industry related projects there must be one internal faculty advisor / Supervisor from Industry (External), this is in addition to the regular faculty supervision.

The final examination for project work will be evaluated based on the final report submitted by the project group **of not exceeding four students**, and the viva voce by an external examiner.

#### **Objectives**

Academic project work plays a crucial role in the education of Diploma in Engineering students, as it helps them apply theoretical knowledge to practical situations and prepares them for real-world engineering challenges.

- Integration of Knowledge: Consolidate and integrate theoretical knowledge acquired in coursework to solve practical engineering problems.
- **Skill Development**: Enhance technical skills related to the specific field of engineering through hands-on experience and application.
- **Problem-Solving Abilities**: Develop critical thinking and problem-solving abilities by addressing complex engineering issues within a defined scope.
- **Project Management**: Gain experience in project planning, execution, and management, including setting objectives, timelines, and resource allocation.



- **Teamwork and Collaboration**: Foster teamwork and collaboration by working in multidisciplinary teams to achieve project goals and objectives.
- **Research Skills**: Acquire research skills by conducting literature reviews, gathering relevant data, and applying research methodologies to investigate engineering problems.
- **Innovation and Creativity**: Encourage innovation and creativity in proposing and developing engineering solutions that may be novel or improve upon existing methods.
- **Communication Skills**: Improve communication skills, both oral and written, by presenting project findings, writing technical reports, and effectively conveying ideas to stakeholders.
- Ethical Considerations: Consider ethical implications related to engineering practices, including safety, environmental impact, and societal concerns.
- **Professional Development**: Prepare for future professional roles by demonstrating professionalism, initiative, and responsibility throughout the project lifecycle.

### Course Outcomes

**CO 1:** Demonstrate the ability to apply theoretical concepts and principles learned in coursework to solve practical engineering problems encountered during the project.

**CO 2:** Develop and enhance technical skills specific to the field of engineering relevant to the project, such as design, analysis, simulation, construction, testing, and implementation.

**CO 3:** Apply critical thinking and problem-solving skills to identify, analyze, and propose solutions to engineering challenges encountered throughout the project lifecycle.

**CO 4:** Acquire project management skills by effectively planning, organizing, and executing project tasks within defined timelines and resource constraints.

**CO 5:** Improve communication skills through the preparation and delivery of project reports, presentations, and documentation that effectively convey technical information to stakeholders.



### Important points to consider to select the mini project.

- Selecting a project work in Diploma Engineering is a significant decision that can greatly influence your learning experience and future career prospects.
- Choose a project that aligns with your career aspirations and interests within the field of engineering. Consider how the project can contribute to your professional development and future opportunities.
- Ensure the project aligns with your coursework and specialization within the Diploma program. It should complement and build upon the knowledge and skills you have acquired in your studies.
- Evaluate the scope of the project to ensure it is manageable within the given timeframe, resources, and constraints. Avoid projects that are overly ambitious or impractical to complete effectively.
- Assess the availability of resources needed to conduct the project, such as equipment, materials, laboratory facilities, and access to relevant software or tools. Lack of resources can hinder project progress.
- Select a project that genuinely interests and motivates you. A project that captures your curiosity and passion will keep you engaged and committed throughout the project duration.
- Consider the availability and expertise of faculty advisors or industry mentors who can
  provide guidance and support throughout the project. Effective mentorship is crucial for
  success.
- Clearly define the learning objectives and expected outcomes of the project. Ensure that the project will help you achieve specific learning goals related to technical skills, problem-solving, and professional development.
- Look for opportunities to propose innovative solutions or explore new methodologies within your project. Projects that encourage creativity can set you apart and enhance your learning experience.



| 2020235773 | Mini Project<br>(Sandwich Course Only) | L | Т | Ρ | С |
|------------|----------------------------------------|---|---|---|---|
| PROJECT    |                                        | 0 | 0 | 4 | 2 |

- Consider ethical implications related to the project, such as safety protocols, environmental impact, and compliance with ethical guidelines in research and engineering practices.
- Evaluate whether the project offers opportunities for collaboration with peers, experts from other disciplines, or industry partners. Interdisciplinary projects can broaden your perspective and enhance your teamwork skills.
- Consider the potential impact of your project on society or the engineering community. Projects that address significant challenges or contribute to social good can be highly fulfilling and make a meaningful difference.

By carefully considering these points, Diploma Engineering students can make informed decisions when selecting project work that not only enhances their academic learning but also prepares them for successful careers in engineering.

## Duties Responsibilities of the internal faculty advisor.

Each group should have an internal faculty advisor assigned by the HOD/Principal.

- The project should be approved by the project monitoring committee constituted by the Chairman Board of Examinations.
- The project should be selected in the sixth semester itself. Each project shall have a maximum of four students in the project group.
- Provide comprehensive academic advising to help in the selection of appropriate project that align with their interests and career goals.
- Offer expertise and feedback to ensure rigorous methodology, innovative approaches, and meaningful contributions to the field.
- Assist in developing technical and professional skills through hands-on projects, laboratory work, and practical applications of theoretical knowledge.
- Provide personal mentorship, fostering a supportive relationship that encourages growth, resilience, and a positive academic experience.
- Facilitate connections between students and industry professionals, alumni, and other relevant networks to enhance their professional opportunities and industry exposure.



| 2020235773 | Mini Project<br>(Sandwich Course Only) | L | Т | Р | С |
|------------|----------------------------------------|---|---|---|---|
| PROJECT    |                                        | 0 | 0 | 4 | 2 |

- Ensure students have access to necessary resources, including research materials, lab equipment, software, and academic literature.
- Regularly monitor and evaluate the progress of the project, providing constructive feedback and guidance to help them stay on track and achieve their goals.
- Instill and uphold high ethical and professional standards, encouraging students to practice integrity and responsibility in their work.
- Assist in preparing progress reports, writing recommendation letters, and facilitating grant applications.
- Organize and participate in workshops, seminars, and other educational events that enhance the learning experience and professional development.
- Address any issues or conflicts that arise, providing mediation and support to ensure a positive and productive academic environment.

### Instructions to the students.

- Regularly meet with your internal faculty advisor for guidance on academic progress, research projects, and career planning. Be proactive in seeking advice and support from your faculty advisor.
- Use planners, calendars, and task management tools to keep track of assignments, project deadlines, and study schedules. Prioritize tasks to manage your time efficiently.
- Take advantage of opportunities to participate in projects and hands-on activities. These experiences are crucial for applying your theoretical knowledge and gaining practical skills.
- Focus on improving essential professional skills such as communication, teamwork, problem-solving, and leadership. Participate in workshops and seminars that enhance these competencies.
- Actively seek networking opportunities through industry events, seminars, and meetings.
   Establish connections with peers, alumni, and professionals in your field to build a strong professional network.


| 2020235773 | Mini Project           | L | Т | Р | С |
|------------|------------------------|---|---|---|---|
| PROJECT    | (Sandwich Course Only) | 0 | 0 | 4 | 2 |

- Seek internships, co-op programs, or part-time jobs related to your field of study. Real-world experience is invaluable for understanding industry practices and enhancing your employability.
- Uphold high ethical standards in all your academic and professional activities. Practice integrity, honesty, and responsibility. Adhere to the ethical guidelines and standards set by your institution and the engineering profession.
- Adopt a mindset of lifelong learning. Stay updated with the latest developments and trends in engineering by reading industry journals, attending conferences, and taking additional courses.

# Documents to be submitted by the student for a project.

Submit a printed report of your project work along with the fabrication model / analysis report for the End Semester Examination.

| SI.<br>No. | Topics                                | Description                                                                                                            |
|------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 1          | Objectives                            | Clearly defined and specific objectives outlined.<br>Objectives align with the project's scope and purpose.            |
| 2          | Literature<br>Review                  | Thorough review of relevant literature.<br>Identification of gaps and justification for the project's<br>contribution. |
| 3          | Research<br>Design and<br>Methodology | Clear explanation of the research design.<br>Appropriateness and justification of chosen research methods.             |

## **Rubrics for Mini Project Work**



| 2020235773 | Mini Project           | L | Т | Р | С |
|------------|------------------------|---|---|---|---|
| PROJECT    | (Sandwich Course Only) | 0 | 0 | 4 | 2 |
|            |                        |   |   |   |   |

| 4  | Project<br>Management             | Adherence to project timeline and milestones.<br>Effective organization and planning evident in the project<br>execution.                       |
|----|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | Documentation                     | Comprehensive documentation of project details.<br>Clarity and completeness in recording methods, results, and<br>challenges.                   |
| 6  | Presentation<br>Skills            | Clear and articulate communication of project findings.<br>Effective use of visuals, if applicable.                                             |
| 7  | Analysis and<br>Interpretation    | In-depth analysis of data.<br>Clear interpretation of results in the context of research<br>questions.                                          |
| 8  | Problem-Solving                   | Demonstrated ability to identify and address challenges<br>encountered during the project.<br>Innovative solutions considered where applicable. |
| 9  | Professionalism<br>and Compliance | Adherence to ethical standards in research.<br>Compliance with project guidelines and requirements.                                             |
| 10 | Quality of Work                   | Overall quality and contribution of the project to the field.<br>Demonstrated effort to produce high-quality work.                              |



PROJECT

| L | Т | Ρ | С |
|---|---|---|---|
| 0 | 0 | 4 | 2 |

## SCHEME OF EVALUATION

The mark allocation for Internal and End Semester Viva Voce are as below.

| Internal Mark Split (40 Marks)* |                       |                       |  |  |  |
|---------------------------------|-----------------------|-----------------------|--|--|--|
| Review 1                        | Review 2              | Review 3              |  |  |  |
| (10 Marks)                      | (15 Marks)            | (15 marks)            |  |  |  |
| Committee: 5 Marks.             | Committee: 7.5 Marks  | Committee: 7.5 Marks  |  |  |  |
| Supervisor: 5 Marks             | Supervisor: 7.5 Marks | Supervisor: 7.5 Marks |  |  |  |

Note: \* The rubrics should be followed for the evaluation of the internal marks during reviews.

# **END SEMESTER EXAMINATION - Project Exam**

The performance of each student in the project group would be evaluated in a viva voce examination conducted by a committee consisting of an external examiner and the Department project supervisor and an internal examiner.

| End Semester (100) <sup>#</sup> |               |               |                  |  |  |  |
|---------------------------------|---------------|---------------|------------------|--|--|--|
| Record                          | Presentation  | Viva Voce     | Model / Analysis |  |  |  |
| (20 Marks)                      | (20 Marks)    | (20 Marks)    | Report           |  |  |  |
|                                 |               |               | (40 Marks)       |  |  |  |
| External: 10                    | External: 10  | External: 10  | External: 20     |  |  |  |
| Internal: 5                     | Internal: 5   | Internal: 5   | Internal: 10     |  |  |  |
| Supervisor: 5                   | Supervisor: 5 | Supervisor: 5 | Supervisor: 10   |  |  |  |

<sup>#</sup>The marks scored will be converted to 60 Marks.



| 6000236111 | Advanced Engineering Mathematics | L | Т | Ρ | С |
|------------|----------------------------------|---|---|---|---|
| THEORY     |                                  | 3 | 0 | 0 | 3 |

#### Introduction

Mathematics is essential for engineering students to understand core engineering subjects. It provides the framework for engineers to solve problems in engineering domains. This course is designed to bridge the gap between diploma mathematics and B.E/B.Tech mathematics in matrix algebra, differential calculus, vector calculus, differential equations, and Laplace transforms.

#### **Course Objectives**

The objective of this course is to enable the students to

- 1. Understand the concepts of eigen-values and eigen-vectors of matrices.
- Learn the notation of partial differentiation and determine the extremities of functions of two variables.
- 3. Acquire knowledge in vector calculus which is significantly used to solve engineering problems.
- 4. Formulate and solve differential equations.
- 5. Understand Laplace transformation and its engineering applications.

## **Course Outcomes**

After successful completion of this course, the students should be able to

- CO1: Find eigenvalues and corresponding eigenvectors of a square matrix.
- CO2: Apply the knowledge of partial differentiation to evaluate Jacobian and extremities of two variable functions.
- CO3: Evaluate the gradient of a scalar field and the divergence and curl of vector fields.
- CO4: Solve ordinary differential equations using various techniques.
- CO5: Use Laplace transforms to solve first-order ordinary differential equations.

#### **Pre-requisites**

Matrices, Determinants, Differentiation, Integration and Vector Algebra.



| 6000236111 | Advanced Engineering Mathematics | L | Т | Ρ | С |
|------------|----------------------------------|---|---|---|---|
| THEORY     |                                  | 3 | 0 | 0 | 3 |

# CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | 3   | 2   | 1   | 1   | 1   | 3   |
| C02     | 3   | 3   | 2   | 1   | 1   | 1   | 3   |
| C03     | 3   | 3   | 2   | 1   | 1   | 1   | 3   |
| C04     | 3   | 3   | 2   | 1   | 1   | 1   | 3   |
| C05     | 3   | 3   | 2   | 1   | 1   | 1   | 3   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

## Instructional Strategy

- A theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome-based.
- All demonstrations/Hands-on practices might be under a simulated environment.
- Use an inducto-deductive approach to achieve the desired learning objectives.
- Use open-ended questions to nurture the problem-solving and reasoning skills among students.
- Support and guide the students for self-study.
- State the need for mathematics with engineering studies and provide real-life examples.



#### Assessment Methodology

|                       | С                                                                     | s)        | End Semester                         |                      |                           |
|-----------------------|-----------------------------------------------------------------------|-----------|--------------------------------------|----------------------|---------------------------|
|                       | CA1                                                                   | CA2       | CA3                                  | CA4                  | Examination<br>(60 marks) |
| Mode                  | le Written test<br>(Two units) Written test<br>(Another Two<br>units) |           | Quiz<br>MCQ<br>(Online /<br>Offline) | Model<br>Examination | Written<br>Examination    |
| Duration              | 2 Periods 2 Periods                                                   |           | 1 Hour                               | 3 Hours              | 3 Hours                   |
| Exam Marks            | 50                                                                    | 50        | 60                                   | 100                  | 100                       |
| Converted to          | 15                                                                    | 15        | 5                                    | 20                   | 60                        |
| Marks                 | 15                                                                    |           | 5                                    | 20                   | 60                        |
| Tentative<br>Schedule | 6th Week                                                              | 12th Week | 13-14th Week                         | 16th Week            |                           |

**CA1 and CA2:** Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

(5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.



| 6000236111 | Advanced Engineering Mathematics | L | Т | Ρ | С |
|------------|----------------------------------|---|---|---|---|
| THEORY     |                                  | 3 | 0 | 0 | 3 |

**CA3:** 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

**CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

# **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

# Syllabus Contents

| Unit I     | EIGENVALUES AND EIGENVECTORS                                                   |   |
|------------|--------------------------------------------------------------------------------|---|
| Character  | istic equation – Eigen-values of $2 \times 2$ and $3 \times 3$ real matrices – | 7 |
| Eigen-vec  | tors of $2 \times 2$ real matrices – Properties of eigen-values (excluding     |   |
| proof) – ( | Cayley-Hamilton theorem (excluding proof) – Simple problems.                   |   |
| Unit II    | FUNCTIONS OF SEVERAL VARIABLES                                                 |   |
| Partial de | rivatives of two variable and three variable functions (up to second order)    | 7 |
| – Homog    | geneous functions and Euler's theorem (excluding proof) – Jacobian             |   |
| matrix ar  | d determinant - Maxima and minima of functions of two variables -              |   |
| Simple pr  | oblems.                                                                        |   |
| Unit III   | VECTOR CALCULUS                                                                |   |
| Scalar fie | ld and Vector field – Vector differential operator – Gradient of a scalar      | 7 |
| field – Di | irectional derivative – Divergence and curl of a vector field (excluding       |   |
| properties | s) – Solenoidal and irrotational vector fields – Simple problems.              |   |
|            |                                                                                |   |



THEORY

| L | Т | Ρ | С |
|---|---|---|---|
| З | 0 | 0 | 3 |

| Unit IV                                                             | DIFFERENTIAL EQUATIONS                                                                                                                                                                                                                                                                                                                                         |    |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Differentia<br>equation<br>Leibnitz's                               | al equation – Formation – Order and degree – Solution of a differential<br>– Equations of first order and first degree – Variable separable method –<br>Linear equations – Second order equations of the form                                                                                                                                                  | 7  |
| $(aD^2 + bD)$<br>equation<br>Particular                             | $(D + c)y = e^{nx}$ where $a, b, c$ and $n$ are constants and the auxiliary $am^2 + bm + c = 0$ has only real roots) – Complementary function – integral – General solution – Simple problems.                                                                                                                                                                 |    |
| Unit V                                                              | LAPLACE TRANSFORMS                                                                                                                                                                                                                                                                                                                                             |    |
| Definition<br>Linearity a<br>– Laplace<br>Laplace tr<br>differentia | of Laplace transform – Laplace transforms of standard functions -<br>and change of scale property (excluding proofs) – First shifting property<br>e transforms of derivatives – Properties (excluding proofs) – Inverse<br>ransforms – Properties (excluding proofs) – Solving first order ordinary<br>al equation using Laplace transforms – Simple problems. | 7  |
|                                                                     | Revision + Test                                                                                                                                                                                                                                                                                                                                                | 10 |
|                                                                     | TOTAL HOURS                                                                                                                                                                                                                                                                                                                                                    | 45 |

#### Suggested list of Students Activity,

- Demonstrate the applications of eigen-values in stability analysis, decouple of three-phase systems and vibration analysis.
- Demonstrate maxima and minima of two variable functions using GeoGebra graphing calculator.
- Demonstrate solenoidal vector field and irrotational vector field using engineering applications.
- Demonstrate the applications of differential equations in solving engineering problems.
- Presentation /Seminars by students.
- Quizzes.



#### **Reference Books:**

- 1. John Bird, Higher Engineering Mathematics, Routledge, 9<sup>th</sup> Edition, 2021.
- 2. Grewal, B.S., Higher Engineering Mathematics, Khanna Publishers, 42<sup>nd</sup> Edition, 2012.
- 3. Arumugam, S., Thangapandi Isaac, A., & Somasundaram, A., Differential Equations and Applications, Yes Dee Publishing Pvt. Ltd., 2020.
- 4. Duraipandian, P., & Kayalal Pachaiyappa, Vector Analysis, S Chand and Company Limited, 2014.
- 5. Narayanan, S., & Manicavachagom Pillai T.K., Calculus Volume I and II, .Viswanathan Publishers Pvt. Ltd., 2007.

#### Web Reference

- 1. https://www.khanacademy.org/math/
- 2. https://www.mathportal.org/
- 3. https://openstax.org/subjects/math/
- 4. https://www.mathhelp.com/
- 5. https://www.geogebra.org/
- 6. https://www.desmos.com/
- 7. https://phet.colorado.edu/

## END SEMESTER QUESTION PATTERN - Theory Exam

#### Duration: 3 Hours.

#### Maximum Marks: 100

Note: Answer Ten questions by selecting Two questions from each unit. Each question carries 10 marks.

## Instruction to the question setters.

Each unit should have four questions. Each question carries 10 Marks. Each question may have two subdivisions only.



| 6000236112 | Entropropourchin | L | Т | Ρ | С |
|------------|------------------|---|---|---|---|
| THEORY     | Entrepreneursnip | 3 | 0 | 0 | 3 |

#### Introduction

Development of a diploma curriculum is a dynamic process responsive to the society and reflecting the needs and aspirations of its learners. Fast changing society deserves changes in educational curriculum particularly to establish relevance to emerging socio-economic environments; to ensure equity of opportunity and participation and finally promote concern for excellence. In this context the course on entrepreneurship and start ups aims at instilling and stimulating human urge for excellence by realizing individual potential for generating and putting to use the inputs relevant to social prosperity and thereby ensuring good means of living for every individual, providing jobs and developing the Indian economy.

#### **Course Objectives**

After completing this subject, the student will be able to

- Acquire entrepreneurial spirit and resourcefulness
- Familiarize Acquire knowledge about the business idea and product selection
- Analyze the banking and financial institutions
- Understand the pricing policy and cost analysis
- Get knowledge about the business plan preparation

#### **Course Outcomes**

CO1: Explain the process of entrepreneurship

- CO2: Analyse the importance of generation of ideas and product selection
- CO3: Familiarization of various financial and non financial schemes
- CO4: Acquire various cost components to arrive pricing of the product
- CO5: Learn the preparation of project feasibility report

## **Pre-requisites**

Knowledge of basics of Engineering and Industrial engineering



| 6000236112 | Entropropourchip | L | Т | Ρ | С |
|------------|------------------|---|---|---|---|
| THEORY     | Entrepreneurship | 3 | 0 | 0 | 3 |

CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | -   | -   | -   | -   | 3   | 1   | 3   |
| C02     | -   | -   | -   | -   | 3   | 3   | 3   |
| C03     | -   | -   | -   | 1   | -   | 3   | 2   |
| C04     | -   | 1   | 3   | 3   | 2   | 3   | 2   |
| C05     | -   | 2   | 3   | 3   | 3   | 3   | 3   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

## Instructional Strategy

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice- activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real- world scenarios when possible.



| 6000236112 | Entropropourchip | L | Т | Ρ | С |
|------------|------------------|---|---|---|---|
| THEORY     | Entrepreneursnip | 3 | 0 | 0 | 3 |

## Assessment Methodology

|                       | С                           | 5)                                     | End Semester                         |                      |                        |
|-----------------------|-----------------------------|----------------------------------------|--------------------------------------|----------------------|------------------------|
|                       | CA1                         | CA2                                    | CA3                                  | CA4                  | Examination (60 marks) |
| Mode                  | Written test<br>(Two units) | Written test<br>(Another Two<br>units) | Quiz<br>MCQ<br>(Online /<br>Offline) | Model<br>Examination | Written<br>Examination |
| Duration              | 2 Periods                   | 2 Periods                              | 1 Hour                               | 3 Hours              | 3 Hours                |
| Exam Marks            | 50                          | 50                                     | 60                                   | 100                  | 100                    |
| Converted to          | 15                          | 15                                     | 5                                    | 20                   | 60                     |
| Marks                 | 15                          |                                        | 5                                    | 20                   | 60                     |
| Tentative<br>Schedule | 6th Week                    | 12th Week                              | 13-14th Week                         | 16th Week            |                        |

**CA1 and CA2:** Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

(5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

**CA3:** 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept



| 6000236112 | Entropropourchip | L | Т | Ρ | С |
|------------|------------------|---|---|---|---|
| THEORY     | Entrepreneurship | 3 | 0 | 0 | 3 |

for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

**CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

Question Pattern:

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

## Syllabus Contents

| Unit I                                                                                | Entrepreneurship – Introduction and Process                                  |   |  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---|--|
| Concept o                                                                             | of entrepreneurship - Importance, Myths about Entrepreneurship, Pros and     | 7 |  |
| Cons of                                                                               | Entrepreneurship, Process of Entrepreneurship, , Competencies and            |   |  |
| characteri                                                                            | stics of an entrepreneur -, Ethical Entrepreneurship, Entrepreneurial        |   |  |
| Values an                                                                             | d Attitudes, Creativity, Innovation and entrepreneurship- Entrepreneurs - as |   |  |
| problem s                                                                             | olvers, Mindset of an employee and an entrepreneur, - Risk                   |   |  |
| Taking-Co                                                                             | ncepts                                                                       |   |  |
| Unit II                                                                               | Business Idea                                                                |   |  |
|                                                                                       |                                                                              | _ |  |
| Types of                                                                              | Business: Manufacturing, Trading and Services, Stakeholders: sellers,        | 7 |  |
| vendors a                                                                             | nd consumers and Competitors, E- commerce Business Models, business          |   |  |
| idea gene                                                                             | ration -Types of Resources - Human, Capital and Entrepreneurial tools and    |   |  |
| resources, etc.,- setting business goals- Patent, copyright and Intellectual property |                                                                              |   |  |
| rights, Customer Relations and Vendor Management, -Business Ideas vs. Business        |                                                                              |   |  |
| Opportuni                                                                             | ties, Opportunity – SWOT ANALYSIS of a business idea - Business Failure      |   |  |
| – causes                                                                              | and remedies Types of business risks.                                        |   |  |



| 6000236112 | Entropropourchin | L | Т | Ρ | С |
|------------|------------------|---|---|---|---|
| THEORY     | Entrepreneursnip | 3 | 0 | 0 | 3 |

| Unit III    | Banking                                                                    |    |
|-------------|----------------------------------------------------------------------------|----|
| Size and    | capital based classification of business enterprises- Role of financial    | 7  |
| institution | s, Role of Government policy, Entrepreneurial support systems, Incentive   |    |
| schemes     | for state government, and Incentive schemes for Central governments.       |    |
| Unit IV     | Pricing and Cost Analysis                                                  |    |
| Types of    | Costs - Variable - Fixed- Operational Costs - Break Even Analysis - for    | 7  |
| single pro  | duct or service, -financial Business Case Study, Understand the meaning    |    |
| and conc    | ept of the term Cash Inflow and Cash Outflow- Pricing- Calculate Per Unit  |    |
| Cost of a   | single product, , Understand the importance and preparation of Income      |    |
| Statement   | , Prepare a Cash Flow Projection- Factors affecting pricing GST.           |    |
| Unit V      | Business Plan Preparation                                                  |    |
| Feasibility | Report – Technical analysis, financial analysis- Market Research -         | 7  |
| Concept,    | mportance and Process- tools for market research- Market Sensing and       |    |
| Testing, N  | larketing and Sales strategy, Digital marketing, Branding - Business name, |    |
| logo, tag   | line, Promotion strategy, Business Plan Preparation, -Concept and          |    |
| Importanc   | e, , Execution of Business Plan.                                           |    |
|             | Revision + Test                                                            | 10 |
|             | TOTAL HOURS                                                                | 45 |

#### Suggested list of Students Activity.

- 1. Students can explore app development or web design. They'll learn about technology, user experience, and marketing.
- 2. Hosting events, workshops, or conferences allows students to practice project management, networking, and marketing skills.
- 3. Encourage students to address social or environmental issues through innovative business solutions. This fosters empathy and creativity.



| 6000236112 | Entrepreneurship - | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| THEORY     |                    | 3 | 0 | 0 | 3 |

- 4. Part of entrepreneurship clubs or organizations provides networking opportunities, mentorship, and exposure to real-world challenges.
- 5. Competitions like business plan contests or pitch events allow students to showcase their ideas and receive feedback.
- 6. Students can create and sell handmade crafts, artwork, or other products. This teaches them about production, pricing, and customer relations.
- 7. Students can provide consulting services in areas they're knowledgeable about, such as social media marketing or financial planning.
- Encourage students to create and manage their own small business or offer freelance services. This hands-on experience helps them understand various aspects of entrepreneurship.

## Text and Reference Books:

- G.K. Varshney, Fundamentals of Entrepreneurship, Sahitya Bhawan Publications, Agra., 2019.
- 2. H.Nandan, Fundamentals of Entrepreneurship, Prentice Hall India Learning Private Limited, Third Edition, 2013.
- 3. R.K. Singal, Entrepreneurship Development & amp; Management, S K Kataria and Sons, 2013.

## Web Reference:

- https://ocw.mit.edu/courses/15-390-new-enterprises-spring-2013/resources/lecture-1/
- https://onlinecourses.nptel.ac.in/noc20\_ge08/preview

# **END SEMESTER QUESTION PATTERN - Theory Exam**

#### Duration: 3 Hours.

# Maximum Marks: 100

Note: Answer Ten questions by selecting Two questions from each unit. Each question carries 10 marks.

## Instruction to the question setters.

Each unit should have four questions. Each question carries 10 Marks. Each question may have two subdivisions only.



| 6000236113 | Project Management | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| THEORY     |                    | 3 | 0 | 0 | 3 |

#### Introduction

Project management is the systematic application of knowledge, skills, tools, and techniques to project activities to meet specific project requirements. It involves planning, organizing, and managing resources to achieve project goals within defined scope, time, and budget constraints. Project management encompasses several key processes and phases, including initiation, planning, execution, monitoring and controlling, and closing. It is essential across various industries to ensure projects are completed successfully, efficiently, and effectively, aligning with organizational objectives and stakeholder expectations. Project managers play a crucial role in leading teams, managing risks, ensuring quality, and communicating with stakeholders to drive project success.

#### **Course Objectives**

After completing this subject, the student will be able,

- To understand the concept, characteristics and elements of projects.
- To understand the stages in Project Life Cycle.
- To appreciate the need for Project Portfolio Management System.
- To know the considerations in choosing appropriate project management structure.
- To understand the components of techno-economic feasibility studies.
- To know about the detailed project report
- To learn about project constraints.
- To understand the techniques of evaluation.
- To get insight into the Social Cost Benefit Analysis Method.
- To know how to construct project networks using PERT and CPM.
- To learn how to crash project networks
- To understand the meaning of project appraisal.
- To understand the meaning of project audits.
- To know the qualities of an effective project manager.
- To understand the stages in the Team Development model.



| 6000236113 | Project Management | L | Т | Р | С |
|------------|--------------------|---|---|---|---|
| THEORY     |                    | 3 | 0 | 0 | 3 |

## **Course Outcomes**

- CO 1: Explain the principles of Project Management
- CO 2: Create and manage project schedules.
- CO 3: Create structure and manage the project commitments.
- CO 4: Acquire to Gain enterprise support.
- CO 5: Prepare a Detailed Project Report (DPR).

## **Pre-requisites**

Basic Knowledge.

## CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | -   | -   | -   | -   | 3   | 1   |
| C02     | 3   | -   | -   | -   | 1   | 3   | 1   |
| C03     | 3   | -   | -   | 1   | 1   | 3   | 1   |
| C04     | 3   | -   | -   | -   | 1   | 3   | 1   |
| C05     | 3   | -   | -   | 1   | 1   | 3   | 1   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation



#### Instructional Strategy

- It is advised that teachers take steps to pique pupils' attention and boost their curiosity to learn.
- Implement task-based learning activities where students work on specific tasks or projects.
- Incorporate technology tools and resources, such as online platforms, interactive multimedia, and virtual communication tools, to enhance engagement and provide additional practice opportunities.
- All demonstrations/Hand-on practices may be followed in the real environment as far as possible.

|                       | С                           | End Semester                           |                                      |                      |                        |
|-----------------------|-----------------------------|----------------------------------------|--------------------------------------|----------------------|------------------------|
|                       | CA1                         | CA2                                    | CA3                                  | CA4                  | Examination (60 marks) |
| Mode                  | Written test<br>(Two units) | Written test<br>(Another Two<br>units) | Quiz<br>MCQ<br>(Online /<br>Offline) | Model<br>Examination | Written<br>Examination |
| Duration              | 2 Periods                   | 2 Periods                              | 1 Hour                               | 3 Hours              | 3 Hours                |
| Exam Marks            | 50                          | 50                                     | 60                                   | 100                  | 100                    |
| Converted to          | 15                          | 15                                     | 5                                    | 20                   | 60                     |
| Marks                 | 15                          |                                        | 5                                    | 20                   | 60                     |
| Tentative<br>Schedule | 6th Week                    | 12th Week                              | 13-14th Week                         | 16th Week            |                        |

# Assessment Methodology



| 6000236113 | Project Management | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| THEORY     |                    | 3 | 0 | 0 | 3 |

**CA1 and CA2:** Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

(5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

**CA3:** 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

**CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

#### **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

## Syllabus Contents

| Unit I     | Project Management – An Overview, Project Portfolio Management System<br>and Structure, Steps in Defining Project and Project Delays |   |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|
| Project -  | Classification – Importance of Project Management – An Integrated                                                                    | 7 |  |  |  |  |  |
| Approach   | - Project Portfolio Management System - The Need - Choosing the                                                                      |   |  |  |  |  |  |
| appropriat | te Project Management Structure: Organizational considerations and                                                                   |   |  |  |  |  |  |
| project co | onsiderations - steps in defining the project - project Rollup - Process                                                             |   |  |  |  |  |  |
|            |                                                                                                                                      |   |  |  |  |  |  |



breakdown structure – Responsibility Matrices – External causes of delay and internal constraints.

# Unit II Various Stages and Components of Project Feasibility Studies, Phases of a Project, Stages in Project Life Cycle and Project Constraints

Project feasibility studies - Opportunity studies, General opportunity studies, specific opportunity studies, pre-feasibility studies, functional studies or support studies, feasibility study – components of project feasibility studies – Managing Project resources flow – project planning to project completion: Pre-investment phase, Investment Phase and operational phase – Project Life Cycle – Project constraints.

# Unit IIIProject Evaluation under Certainty and Uncertainty, Project Evaluation,Commercial and Social Cost Benefit Analysis

Project Evaluation under certainty - Net Present Value (Problems - Case Study), Benefit Cost Ratio, Internal Rate of Return, Urgency, Payback Period, ARR – Project Evaluation under uncertainty – Methodology for project evaluation – Commercial vs. National Profitability – Social Cost Benefit Analysis, Commercial or National Profitability, social or national profitability.

# Unit IV Developing Project Network using PERT and CPM, Project Appraisal and Control Process.

Developing a Project Plan - Developing the Project Network – Constructing a Project 7 Network (Problems) – PERT – CPM – Crashing of Project Network (Problems - Case Study) – Resource Leveling and Resource Allocation – how to avoid cost and time overruns – Steps in Project Appraisal Process – Project Control Process – Control Issues – Project Audits – the Project Audit Process – project closure – team, team member and project manager evaluations.



# DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 REGULATION 2023

7

| 6000236113 | Project Management | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| THEORY     |                    | 3 | 0 | 0 | 3 |

| Unit V                                                                               | Project Managing Versus Leading of Project, Qualities of Project Manager and<br>Managing Project Teams, Team Building Models and Performance Teams and<br>Team Pitfalls. |  |  |  |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Managing versus leading a project - managing project stakeholders – social network 7 |                                                                                                                                                                          |  |  |  |  |  |
| building (Including management by wandering around) - qualities of an effective      |                                                                                                                                                                          |  |  |  |  |  |
| project manager – managing project teams – Five Stage Team Development Model         |                                                                                                                                                                          |  |  |  |  |  |
| - Situational factors affecting team development - project team pitfalls.            |                                                                                                                                                                          |  |  |  |  |  |

| Revision + Test | 10 |
|-----------------|----|
| TOTAL HOURS     | 45 |

# Suggested list of Students Activity,

# **Project Simulation and Role-Playing:**

- Activity: Participate in simulated project scenarios where students take on different roles within a project team (e.g., project manager, team member, stakeholder).
- Purpose: This helps students understand the dynamics of project management, including leadership, communication, and team collaboration.

## Case Study Analysis:

- Activity: Analyze real-world case studies of successful and failed projects.
- Purpose: This activity enables students to apply theoretical knowledge to practical situations, identify best practices, and learn from the challenges and solutions implemented in real projects.

# **Project Plan Development:**

- Activity: Develop a comprehensive project plan for a hypothetical or real project, including scope, schedule, budget, risk management, and quality management plans.
- Purpose: This allows students to practice creating detailed and structured project plans, honing their skills in planning and organizing project activities.



# DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI - 600 025 **REGULATION 2023**

## Group Project:

- Activity: Work in teams to manage a project from initiation to closure, simulating a real project environment.
- Purpose: Group projects help students learn how to work collaboratively, manage group dynamics, and apply project management tools and techniques in a team setting.

#### **Project Management Software Training:**

- Activity: Gain hands-on experience with project management software such as Microsoft Project, Asana, or Trello.
- Purpose: This activity equips students with practical skills in using technology to plan, track, and manage project tasks and resources efficiently.

#### Reference Books:

- Clifford F. Gray And Erik W. Larson, Project Management The Managerial Process, Tata Mcgraw Hill.
- 2. Dragan Z. Milosevic, Project Management Toolbox: Tools And Techniques For The Practicing Project Manager,
- 3. Gopalakrishnan, P/ Ramamoorthy, V E, Textbook Of Project Management, Macmillan India. Ltd.
- 4. Harold Kerzner, Project Management: A Systems Approach To Planning, Scheduling, And Controlling, Eighth Edition, John Wiley & Sons
- 5. Jason Charvat, Project Management Methodologies: Selecting, Implementing, And Supporting Methodologies And Processes For Projects, John Wiley & Sons
- Kevin Forsberg, Ph.D, Hal Mooz, Visualizing Project Management: A Model For Business And Technical Success, Second Edition, Pmp And Howard Cotterman, John Wiley & Sons.

## Web Reference

https://youtu.be/pc9nvBsXsuM NPTEL Courses https://youtu.be/PqQqTAu\_FiM



# END SEMESTER QUESTION PATTERN - Theory Exam

#### Duration: 3 Hours.

#### Maximum Marks: 100

Note: Answer Ten questions by selecting Two questions from each unit. Each question carries 10 marks.

#### Instruction to the question setters.

Each unit should have four questions. Each question carries 10 Marks. Each question may have two subdivisions only.



| 6000236114 | Finance Fundamentals | L | Т | Ρ | С |
|------------|----------------------|---|---|---|---|
| THEORY     |                      | 3 | 0 | 0 | 3 |

#### Introduction

This course gives a deep insight into the finance fundamentals such as money management and the process of acquiring needed funds. It also encompasses the oversight, creation, and study of money, banking, credit, investments, assets, liabilities that make up financial systems and improves overall financial literacy.

#### **Course Objectives**

The objective of this course is to

- 1. Identify different ways to save money for future
- 2. Understand various techniques to raise capital
- 3. Get acquainted with the essential terminologies used in finance language
- 4. Get exposed to different types of budgeting
- 5. Instill the concept of costing and its impact on profitability

#### **Course Outcomes**

After successful completion of this course, the students should be able to

- CO1: Manage financial resources effectively to achieve personal goals
- CO2: Explain the procedure for Business Funding
- CO3: Exhibit financial literacy through the usage of different terminologies appropriate to the context
- CO4: Differentiate the types of budgeting and allocate the resources
- CO5: Apply the idea of marginal costing in decision making

#### **Pre-requisites**

Knowledge of basic mathematics



| 6000236114 | Finance Fundamentals | L | Т | Ρ | С |
|------------|----------------------|---|---|---|---|
| THEORY     |                      | 3 | 0 | 0 | 3 |

# CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | -   | -   | -   | 1   | -   | 2   |
| C02     | 3   | -   | -   | -   | 1   | -   | 2   |
| C03     | 3   | -   | -   | -   | 1   | -   | 2   |
| C04     | 3   | -   | -   | -   | 1   | -   | 2   |
| C05     | 3   |     | -   | -   | 1   | -   | 2   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

## Instructional Strategy

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice- activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real- world scenarios when possible.



| 6000236114 | Financo Fundamentale | L | Т | Ρ | С |
|------------|----------------------|---|---|---|---|
| THEORY     | rindice runuamentais | 3 | 0 | 0 | 3 |

## Assessment Methodology

|                       | С                           | ontinuous Asses                        | sment (40 marks                      | s)                   | End Semester              |
|-----------------------|-----------------------------|----------------------------------------|--------------------------------------|----------------------|---------------------------|
|                       | CA1                         | CA2                                    | CA3                                  | CA4                  | Examination<br>(60 marks) |
| Mode                  | Written test<br>(Two units) | Written test<br>(Another Two<br>units) | Quiz<br>MCQ<br>(Online /<br>Offline) | Model<br>Examination | Written<br>Examination    |
| Duration              | 2 Periods                   | 2 Periods                              | 1 Hour                               | 3 Hours              | 3 Hours                   |
| Exam Marks            | 50                          | 50                                     | 60                                   | 100                  | 100                       |
| Converted to          | 15                          | 15                                     | 5                                    | 20                   | 60                        |
| Marks                 | 1                           | 5                                      | 5                                    | 20                   | 60                        |
| Tentative<br>Schedule | 6th Week                    | 12th Week                              | 13-14th Week                         | 16th Week            |                           |

**CA1 and CA2:** Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

(5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.



| 6000236114 | Financo Fundamontalo | L | Т | Ρ | С |
|------------|----------------------|---|---|---|---|
| THEORY     | Finance Fundamentals | 3 | 0 | 0 | 3 |

**CA3:** 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

**CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

# **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

## Syllabus Contents

| UNIT I                                                                           | Personal Finance                                                          |   |  |  |  |  |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|---|--|--|--|--|
| Personal Finance – Meaning, Objectives and advantages – Individual Perspective – |                                                                           |   |  |  |  |  |
| Family Pe                                                                        | rspective – Time Value of Money – Personal Savings: Meaning, Different    |   |  |  |  |  |
| modes of                                                                         | Saving – Bank Deposit, Online Investments, Insurance, Stocks, Gold, Real  |   |  |  |  |  |
| Estate -                                                                         | Returns Vs Risk - Financial Discipline - Setting Alerts for commitments   |   |  |  |  |  |
| (With Real                                                                       | time Examples).                                                           |   |  |  |  |  |
| UNIT II                                                                          | Business Funding                                                          |   |  |  |  |  |
| Sources: F                                                                       | Personal Savings – Borrowings - Venture Capital – Venture Capital Process | 7 |  |  |  |  |
| – Comme                                                                          | rcial Banks – Government Grants and Scheme.                               |   |  |  |  |  |
| UNIT III                                                                         | Finance language                                                          |   |  |  |  |  |
| Capital -                                                                        | Drawing – Income – Expenditure – Revenue Vs Capital Items – Assets –      | 7 |  |  |  |  |
| Fixed Ass                                                                        | sets – Current Assets – Fictitious Assets – Liabilities – Long-term       |   |  |  |  |  |
| Liabilities                                                                      | – Current Liabilities – Internal Liabilities – External Liabilities –     |   |  |  |  |  |



| 6000236114 | Financo Fundamentale | L | Т | Ρ | С |
|------------|----------------------|---|---|---|---|
| THEORY     | Finance Fundamentais | 3 | 0 | 0 | 3 |

| Shareholders fund: Equity Share capital, Preference Share Capital, Reserve & Surplus |                                                                                                                                                                                                                                                                                                                    |   |  |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| – Borrowings: Debentures, Bank Loan, Other Loan – Depreciation – Reserve Vs          |                                                                                                                                                                                                                                                                                                                    |   |  |  |  |
| Provision.                                                                           |                                                                                                                                                                                                                                                                                                                    |   |  |  |  |
| UNIT IV                                                                              | Budgeting                                                                                                                                                                                                                                                                                                          |   |  |  |  |
| Budgetary                                                                            | Control – Meaning – Preparation of various budgets – Purchase budget                                                                                                                                                                                                                                               | 7 |  |  |  |
| – Sales Bi                                                                           | udget – Production budget – Cash Budget – Flexible budgets.                                                                                                                                                                                                                                                        |   |  |  |  |
| (With Problems)                                                                      |                                                                                                                                                                                                                                                                                                                    |   |  |  |  |
|                                                                                      |                                                                                                                                                                                                                                                                                                                    |   |  |  |  |
| UNIT V                                                                               | Marginal Costing                                                                                                                                                                                                                                                                                                   |   |  |  |  |
| <b>UNIT V</b><br>Marginal (                                                          | <b>Marginal Costing</b><br>Costing – Meaning – Marginal Costing Vs Absorption Costing – Concepts                                                                                                                                                                                                                   | 7 |  |  |  |
| <b>UNIT V</b><br>Marginal (<br>of Variabl                                            | <b>Marginal Costing</b><br>Costing – Meaning – Marginal Costing Vs Absorption Costing – Concepts<br>e Cost, Fixed Cost and Contribution – PV Ratio – Break Even Point –                                                                                                                                            | 7 |  |  |  |
| <b>UNIT V</b><br>Marginal (<br>of Variab<br>Margin of                                | Marginal Costing<br>Costing – Meaning – Marginal Costing Vs Absorption Costing – Concepts<br>e Cost, Fixed Cost and Contribution – PV Ratio – Break Even Point –<br>Safety – Key Factor – Application of Marginal Costing in decision making                                                                       | 7 |  |  |  |
| UNIT V<br>Marginal (<br>of Variabl<br>Margin of<br>– Make or                         | Marginal Costing<br>Costing – Meaning – Marginal Costing Vs Absorption Costing – Concepts<br>e Cost, Fixed Cost and Contribution – PV Ratio – Break Even Point –<br>Safety – Key Factor – Application of Marginal Costing in decision making<br>Buy – Shutdown or Continue – Exploring New Markets (With Problems) | 7 |  |  |  |

## Suggested list of Students Activity,

#### Financial Statement Analysis:

- Activity: Analyze and interpret financial statements, including balance sheets, income statements, and cash flow statements of different companies.
- Purpose: This activity helps students understand the financial health and performance of organizations, developing skills in financial analysis and critical thinking.

## Investment Portfolio Management:

- Activity: Create and manage a simulated investment portfolio, making decisions on asset allocation, stock selection, and diversification.
- Purpose: This allows students to apply theoretical concepts in a practical setting, learning how to evaluate investment opportunities and manage financial risk.



| 6000236114 | Financo Fundamontalo | L | Т | Ρ | С |
|------------|----------------------|---|---|---|---|
| THEORY     | Finance Fundamentals | 3 | 0 | 0 | 3 |

#### Case Study Analysis:

- Activity: Examine real-world case studies involving financial decisions made by companies, such as capital budgeting, mergers and acquisitions, and financial restructuring.
- Purpose: Case studies provide insights into the application of finance principles in business scenarios, enhancing problem-solving and decision-making skills.

#### **Classroom Discussions and Debates:**

- Activity: Participate in discussions and debates on current financial issues, market trends, and economic policies.
- Purpose: Engaging in discussions helps students stay informed about the latest developments in finance, develop their communication skills, and form well-rounded opinions on financial matters.

#### **Reference Books:**

- 1. Banking Theory, Law & Practice Dr.L.Natarajan, Margham Publications.
- 2. Corporate Accounting by T.S.Reddy and Dr.A.Murthy, Margham Publications.
- 3. Management Accounting by T.S.Reddy and Dr.Y.Hariprasd Reddy, Margham Publications.
- 4. Cost Accounting by T.S.Reddy and Dr.Y.Hariprasd Reddy, Margham Publications.

#### END SEMESTER QUESTION PATTERN - Theory Exam

#### Duration: 3 Hours.

#### Maximum Marks: 100

Note: Answer Ten questions by selecting Two questions from each unit. Each question carries 10 marks.

#### Instruction to the question setters.

Each unit should have four questions. Each question carries 10 Marks. Each question may have two subdivisions only.



| 1020236115 | Inductor 4.0 | L | Т | Ρ | С |
|------------|--------------|---|---|---|---|
| THEORY     | industry 4.0 | 3 | 0 | 0 | 3 |

#### Introduction

Industry 4.0, also known as the Fourth Industrial Revolution, represents the current trend of automation and data exchange in manufacturing technologies. It integrates advanced technologies such as artificial intelligence (AI), the Internet of Things (IoT), cloud computing, and big data analytics to create "smart factories" that are highly efficient and adaptive.

Industry 4.0 is transforming the manufacturing landscape by leveraging advanced technologies to create more efficient, flexible, and intelligent production processes. For diploma engineering students, understanding these concepts is crucial as they will play a key role in the future of engineering and manufacturing. Learning Industry 4.0 will not only enhance your technical skills but also prepare you for the evolving job market in the digital age.

#### **Course Objectives**

The objective of this course is to prepare the student,

- To understand the basics of Technology of Industry 4.0 and IoT
- To learn about the Artificial Intelligence and Application Domains
- To study Robotic Process Automation and programming.
- To understand the Augmented & Virtual Reality and its applications
- To learn and evolution of IoT, Sensors, and Actuators

## **Course Outcomes**

On successful completion of this course, the student will be able to,

- CO1: Describe the Industry 4.0 technology and Industrial Internet of Things
- CO2: Explain the Artificial Intelligence (AI) and Future Prospects of AI.
- CO3: Explain Robotic Process Automation (RPA) for Manufacturing Industry
- CO4: Describe Augmented & Virtual Reality and its Applications.
- CO5: Explain the applications of IoT, Sensors, and Actuators in industries

## Pre-requisites

Basic Knowledge of Industry 4.0 and its Applications



| 1020236115 | Inductor 4.0 | L | Т | Ρ | С |
|------------|--------------|---|---|---|---|
| THEORY     | industry 4.0 | 3 | 0 | 0 | 3 |

# CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   |     |     |     | 1   |     | 1   |
| C02     | 3   |     |     |     | 1   |     | 1   |
| C03     | 3   |     |     |     | 1   |     | 1   |
| C04     | 3   |     |     |     | 1   |     | 1   |
| C05     | 3   |     |     |     | 1   |     | 1   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

# Assessment Methodology

|                       | С                           | ontinuous Asses                        | sment (40 marks                      | s)                   | End Semester           |
|-----------------------|-----------------------------|----------------------------------------|--------------------------------------|----------------------|------------------------|
|                       | CA1                         | CA2                                    | CA3                                  | CA4                  | Examination (60 marks) |
| Mode                  | Written test<br>(Two units) | Written test<br>(Another Two<br>units) | Quiz<br>MCQ<br>(Online /<br>Offline) | Model<br>Examination | Written<br>Examination |
| Duration              | 2 Periods                   | 2 Periods                              | 1 Hour                               | 3 Hours              | 3 Hours                |
| Exam Marks            | 50                          | 50                                     | 60                                   | 100                  | 100                    |
| Converted to          | 15                          | 15                                     | 5                                    | 20                   | 60                     |
| Marks                 | 1                           | 5                                      | 5                                    | 20                   | 60                     |
| Tentative<br>Schedule | 6th Week                    | 12th Week                              | 13-14th Week                         | 16th Week            |                        |



| 1020236115 | Inductor 4.0 | L | Т | Ρ | С |
|------------|--------------|---|---|---|---|
| THEORY     | industry 4.0 | 3 | 0 | 0 | 3 |

**CA1 and CA2:** Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

**CA3:** 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

**CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

## **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.



| 1020236115 | Inductor 4.0 | L | Т | Ρ | С |
|------------|--------------|---|---|---|---|
| THEORY     | industry 4.0 | 3 | 0 | 0 | 3 |

# **Syllabus Contents**

| Unit I:       | Introduction to Industry 4.0                                               |   |
|---------------|----------------------------------------------------------------------------|---|
| Need – R      | eason for Adopting Industry 4.0 - Definition – Goals and Design            | 7 |
| Principles    | - Technologies of Industry 4.0 – Big Data – Artificial Intelligence (AI) – |   |
| Industrial I  | nternet of Things - Cyber Security – Cloud – Augmented Reality.            |   |
| Unit II:      | Artificial Intelligence                                                    |   |
| Artificial Ir | ntelligence: Artificial Intelligence (AI) – What & Why? - History of AI -  | 7 |
| Foundation    | ns of AI -The AI - Environment - Societal Influences of AI - Application   |   |
| Domains a     | and Tools - Associated Technologies of AI - Future Prospects of AI -       |   |
| Challenges    | s of Al.                                                                   |   |
| Unit III:     | Robotic Process Automation (RPA)                                           |   |
| Robotic Pr    | ocess Automation (RPA): Introduction to RPA – Need for automation –        | 7 |
| Programm      | ing constructs in RPA – Robots and Softbots – RPA architecture and         |   |
| process m     | ethodologies - Industries best suited for RPA - Risks & Challenges with    |   |
| RPA.          |                                                                            |   |
| Unit IV:      | Augmented & Virtual Reality                                                |   |
| Augmente      | d Reality: Definition - Tools for Augmented Reality – Hololens -           | 7 |
| Advantage     | s and Challenges of AR - Applications of AR in Education, Industries -     |   |
| Mixed Rea     | lity.                                                                      |   |
| Virtual Rea   | ality: Definition – Types of Head Mounted Displays – Tools for Virtual     |   |
| Reality - A   | Applications of VR in Education, Industries - Difference between VR and    |   |
| AR.           |                                                                            |   |



| 1020236115 | Inductor 4.0 | L | Т | Ρ | С |
|------------|--------------|---|---|---|---|
| THEORY     | industry 4.0 | 3 | 0 | 0 | 3 |

| Unit V:                                                                          | IoT, Sensors and Actuators |    |
|----------------------------------------------------------------------------------|----------------------------|----|
| Evolution of IoT – Definition & Characteristics of IoT - Architecture of IoT –   |                            |    |
| Technologies for IoT – Developing IoT Applications – Applications of IoT –       |                            |    |
| Industrial IoT – Security in IoT                                                 |                            |    |
| Analog and Digital Sensors – Interfacing temperature sensor, ultrasound sensor   |                            |    |
| and infrared (IR) sensor with Arduino – Interfacing LED and Buzzer with Arduino. |                            |    |
| Assessment Test and Revision with Student activity                               |                            | 10 |
|                                                                                  | Total                      | 45 |

# Textbook:

- 1. Sudip Misra, Chandana roy, and Anandarup Mukherjee, Introduction to Industrial Internet of Things and Industry 4.0, Taylor & amp; Francis India, 2021.
- 2. Dr Anand Kumar Singh and Dr. Manish Gangil, INDUSTRY 4.0, Shashwat Publication, 2022.
- 3. Alasdair Gilchrist, Industry 4.0: The Industrial Internet of Things, 1st Edition, Apress, 2017.
- 4. Dr Kamlesh Lakhwani, Dr Hemant Kumar Gianey, Joseph Kofi Wireko, and Kamal Kant Hiran, Internet of Things (IoT), First Edition, BPB Publications, 2020.

## Website links for reference:

• https://www.youtube.com/playlist?list=PLbRMhDVUMngdcLdH4-YF1uJI4IuhcDZPR



| 1020236115 | Inductor 4.0 | L | Т | Ρ | С |
|------------|--------------|---|---|---|---|
| THEORY     | industry 4.0 | 3 | 0 | 0 | 3 |

#### END SEMESTER QUESTION PATTERN - Theory Exam

#### Duration: 3 Hrs.

#### Max. Marks: 100

**Note:** Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

#### Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.



| 1020236116 | Additive Manufacturing | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| THEORY     |                        | 3 | 0 | 0 | 3 |

#### Introduction

This course is mainly designed to have a complete knowledge about Additive Manufacturing technologies which is a main component among the nine pillars of Industrie 4.0. This course is suitable for students opting for any pathway under Diploma in Mechanical Engineering stream. This course enhances the technical skills of students such as newer product design, testing and validation, problem solving, innovation, etc.

#### **Course Objectives**

- 1. To impart the knowledge of construction and working principles of additive manufacturing technologies, and their potential applications in design and manufacturing.
- 2. To familiarise with the materials used in AM processes and their applications

#### **Course Outcomes**

On successful completion of this course, the student will be able to,

- CO1: Explain the additive manufacturing technologies and rapid prototyping
- CO2: Acquire the CAD model generation procedure for the AM processes
- CO3: Explain extrusion and sheet metal based AM processes
- CO4: Describe photo polymerization and powder based AM processes
- CO5: Enlighten the various applications of AM processes

## **Pre-requisites**

Knowledge of basic Science, Manufacturing Processes, Machine Tool Technology


| 1020236116 |                        | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| THEORY     | Additive Manufacturing | 3 | 0 | 0 | 3 |

## CO/PO Mapping

| CO / PO | P01 | P02 | P03 | PO4 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | 2   |     | 1   | 1   |     | 1   |
| C02     | 3   |     |     | 1   |     |     | 1   |
| C03     | 3   |     |     | 1   |     |     | 1   |
| C04     | 3   |     |     | 1   |     |     | 1   |
| C05     | 3   |     |     | 1   | 1   |     | 1   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

### Instructional Strategy

- Prepare case study problems to the realistic situations, and real-world examples to make the sessions engaging.
- Additive Manufacturing processes can be displayed via online or offline mode to gain the interest for this course.
- Different methods of teaching such as debate and discussions can be used to enhance the students' centric learning.
- Organise demo sessions on the 3D printing machines that are available in the institution or can be call some vendor for giving demos



| 1020236116 | Additive Menufecturing | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| THEORY     | Additive Manufacturing | 3 | 0 | 0 | 3 |

## Assessment Methodology

|                       | С                           | ontinuous Asses                        | sment (40 marks                      | s)                   | End Semester           |
|-----------------------|-----------------------------|----------------------------------------|--------------------------------------|----------------------|------------------------|
|                       | CA1                         | CA2                                    | CA3                                  | CA4                  | Examination (60 marks) |
| Mode                  | Written test<br>(Two units) | Written test<br>(Another Two<br>units) | Quiz<br>MCQ<br>(Online /<br>Offline) | Model<br>Examination | Written<br>Examination |
| Duration              | 2 Periods                   | 2 Periods                              | 1 Hour                               | 3 Hours              | 3 Hours                |
| Exam Marks            | 50                          | 50                                     | 60                                   | 100                  | 100                    |
| Converted to          | 15                          | 15                                     | 5                                    | 20                   | 60                     |
| Marks                 | 15                          |                                        | 5                                    | 20                   | 60                     |
| Tentative<br>Schedule | 6th Week                    | 12th Week                              | 13-14th Week                         | 16th Week            |                        |

**CA1 and CA2:** Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

**CA3:** 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept



| 1020236116 |                        | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| THEORY     | Additive Manufacturing | 3 | 0 | 0 | 3 |

for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

**CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

## **Question Pattern:**

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

## **Syllabus Contents**

| Unit I                                                                        | Introduction to Additive Manufacturing (AM)                                |   |  |  |  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|---|--|--|--|
| Additive Manufacturing - Overview – Need – History – Classification – working |                                                                            |   |  |  |  |
| principles                                                                    | (concepts only) - Materials for AM - PLA, ABS, PMMA, ceramics,             |   |  |  |  |
| composite                                                                     | es and liquid resins – AM processes - Advantages, Limitations and          |   |  |  |  |
| Challenge                                                                     | s– Rapid Prototyping – Rapid Tooling.                                      |   |  |  |  |
| Unit II                                                                       | Design for Additive Manufacturing                                          |   |  |  |  |
| Basic con                                                                     | cept – CAD model preparation - file formats - Part orientation – Support   | 6 |  |  |  |
| material g                                                                    | eneration – Model slicing – honeycomb structure - Digitization techniques  |   |  |  |  |
| – Model r                                                                     | econstruction – Slicing software - Reverse Engineering – RE application in |   |  |  |  |
| AM.                                                                           |                                                                            |   |  |  |  |
| Unit III                                                                      | Extrusion and Sheet metal based Processes                                  |   |  |  |  |
| Fused Dep                                                                     | oosition Modeling (FDM) – construction, working principle, advantages –    | 6 |  |  |  |
| process                                                                       | parameters involved - Laminated Object Manufacturing (LOM) –               |   |  |  |  |



| 1020236116 | Additive Manufacturing | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| THEORY     | Additive Manufacturing | 3 | 0 | 0 | 3 |

| construction, working principle, advantages - gluing and adhesive bonding - PolyJet - construction, working principle, advantages.                                                                                                                                                                                                                      |                                                    |    |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----|--|--|--|
| Unit IV                                                                                                                                                                                                                                                                                                                                                 | Photo polymerization and Powder based Processes    |    |  |  |  |
| Stereolithography process (SLA) – construction, photo curable materials, working principle, advantages – Selective Laser Sintering (SLS) - construction, working principle, advantages – Electron Beam Melting (EBM) - construction, working principle, advantages – Laser Engineered Net Shaping (LENS) - construction, working principle, advantages. |                                                    |    |  |  |  |
| Unit V                                                                                                                                                                                                                                                                                                                                                  | Applications of Additive Manufacturing             |    |  |  |  |
| Applications of Additive manufacturing technologies – new product development -<br>after sales and service - automobile, aerospace, consumer products, health care<br>industries – customized implants, bio-organs, bio-bones, etc.                                                                                                                     |                                                    |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                         | Assessment Test and Revision with Student activity | 15 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                         | Total                                              | 45 |  |  |  |

## Suggested list of Students Activity,

- Selected topics which are relatively simpler or descriptive in nature should be given to the students for self-learning and assess the development of competency through classroom presentations.
- Mini-projects may be given to a group of students for hand-on experiences.
- Massive open online courses (MOOCs) may be used to teach various topics/subtopics.



| 1020236116 | Additivo Monufacturing | L | Т | Ρ | С |
|------------|------------------------|---|---|---|---|
| THEORY     |                        | 3 | 0 | 0 | 3 |

#### **Reference Books:**

- 1. Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third Edition, World Scientific Publishers, 2010.
- 2. Gebhardt A., "Rapid prototyping", Hanser Gardener Publications, 2003.
- 3. Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 2007.
- 4. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.
- 5. Hilton P.D. and Jacobs P.F., "Rapid Tooling: Technologies and Industrial Applications", CRC press, 2000.
- 6. Tom Page "Design for Additive Manufacturing" LAP Lambert Academic Publishing, 2012.

#### Web Reference

What is 3D printing? How does a 3D printer work? Learn 3D printing 3D Printing - Applications, Types, Process, Advantages (vajiramandravi.com) How a 3D Printer Works and What It Is Used for (spiceworks.com) What is 3D Printing? - Technology Definition and Types - TWI (twi-global.com) https://home.iitk.ac.in/~nsinha/Additive\_Manufacturing%20I.pdf https://web.mit.edu/tdp/www/whatis3dp.html Briefing Note (birmingham.ac.uk)

## **END SEMESTER QUESTION PATTERN - Theory Exam**

#### Duration: 3 Hrs.

#### Max. Marks: 100

**Note:** Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

#### Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.



| 1020236117 | Dower Dignt Engineering | L | Т | Р | С |
|------------|-------------------------|---|---|---|---|
| THEORY     | Fower Flant Engineering | 3 | 0 | 0 | 3 |

#### Introduction

Electrical power is the main resource for any type of industry. Economic growth of the nation essentially results in growth in the power sector. Various conventional power plants such as Hydro, Gas, Thermal, Diesel and Nuclear power plants are employed for power generation. Most of the power plants use Mechanical Engineering equipment and components. Hence, this course attempts to provide the basic knowledge of the components, operation and maintenance of power plants to the students and would also acquaint them with the latest technological advances taking place in this sector.

#### **Course Objectives**

The objective of this course is to enable the student to apply knowledge of mechanical engineering related to power generation systems, their control and economics in different types of power plants for their operation and maintenance.

#### **Course Outcomes**

On successful completion of this course, the student will be able to

- CO1: Analyze economics of power plants and list factors affecting the power plants and interpret the performance of power plants based on load variations
- CO2: Identify elements and their functions and operation of thermal power plants.
- CO3: Identify elements and their functions of hydro, Solar and wind power plant.
- CO4: Identify elements and their functions and operations of nuclear power plants
- CO5: Identify elements and their functions and operations of diesel and gas turbine power plants

#### **Pre-requisites**

Knowledge of Mathematics, Thermal Engineering, Mechanics of machines, Workshop technology, Fluid mechanics and fluid power.



| 1020236117 | Power Plant Engineering | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| THEORY     | Power Plant Engineering | 3 | 0 | 0 | 3 |

## CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 1   | 1   | 1   | 2   | 3   | 3   | 3   |
| C02     | 1   | 2   | 1   | 2   | 3   | 3   | 3   |
| C03     | 2   | 2   | 1   | 1   | 3   | 3   | 3   |
| CO4     | 1   | 1   | 1   | 2   | 2   | 3   | 3   |
| C05     | 1   | 2   | 1   | 2   | 2   | 3   | 3   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy

- 1. The instructional strategy for teaching Powerplant Engineering in polytechnic colleges emphasizes practical application and industry relevance.
- Through a curriculum aligned with the state technical education board, the syllabus is broken down into manageable units, prioritizing topics pertinent to Indian engineering contexts.
- About 15 20% of the topics/ sub-topics which are relatively simpler or descriptive in nature is to be given to the students for self-directed learning and assess the development of the Cos through classroom presentations.
- 4. Before starting practical, the teacher should demonstrate the working of a power plant.
- 5. Show video/ animation films to explain the functioning of various power plants.



| 1020236117 | Power Plant Engineering | L | Т | Р | С |
|------------|-------------------------|---|---|---|---|
| THEORY     | Power Plant Engineering | 3 | 0 | 0 | 3 |

## Assessment Methodology

|                       | С                           | ontinuous Asses                        | sment (40 marks                      | s)                   | End Semester           |
|-----------------------|-----------------------------|----------------------------------------|--------------------------------------|----------------------|------------------------|
|                       | CA1                         | CA2                                    | CA3                                  | CA4                  | Examination (60 marks) |
| Mode                  | Written test<br>(Two units) | Written test<br>(Another Two<br>units) | Quiz<br>MCQ<br>(Online /<br>Offline) | Model<br>Examination | Written<br>Examination |
| Duration              | 2 Periods                   | 2 Periods                              | 1 Hour                               | 3 Hours              | 3 Hours                |
| Exam Marks            | 50                          | 50                                     | 60                                   | 100                  | 100                    |
| Converted to          | 15                          | 15                                     | 5                                    | 20                   | 60                     |
| Marks                 | 15                          |                                        | 5                                    | 20                   | 60                     |
| Tentative<br>Schedule | 6th Week                    | 12th Week                              | 13-14th Week                         | 16th Week            |                        |

**CA1 and CA2:** Assessment written test should be conducted for 50 Marks for two units. The marks scored will be converted to 15 Marks. Best of one will be considered for the internal assessment of 15 Marks.

CA1and CA2, Assessment test should be conducted for two units as below.

Answer five questions (5 X 10 Marks = 50 Marks).

Eight questions will be asked, students should write Five questions. Each unit Four questions can be asked. Each question may have subdivisions. Maximum two subdivisions shall be permitted.

**CA3:** 60 MCQ can be asked by covering the entire portion. It may be conducted by Online / Offline. The answer scripts of every student (online / offline) for this assessment should be kept



| 1020236117 | Power Plant Engineering | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| THEORY     | Power Flant Engineering | 3 | 0 | 0 | 3 |

for records and future verification. The marks scored should be converted to 5 marks for the internal assessment.

**CA4:** Model examination should be conducted as per the end semester question pattern. The marks should be converted to 20 marks for the internal assessment.

## Question Pattern:

Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

Four questions will be asked from every unit, students should write any two questions. The question may have two subdivisions only.

#### Syllabus Contents

| Unit I                                                                         | INTRODUCTION & ECONOMICS OF POWER PLANT                                       |   |  |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---|--|
| Power pla                                                                      | nt-Introduction, Classification - Location of power plant- Choice of Power    | 7 |  |
| plant-Tern                                                                     | ninology used in power plant: Peak load, Base load, Load factor, Load         |   |  |
| curve, der                                                                     | nand factor- Various factor affecting the operation of power plant- Load      |   |  |
| sharing- c                                                                     | ost of power tariff methods-factors involved in fixing of a tariff.           |   |  |
| UNIT II                                                                        | THERMAL POWER PLANT                                                           |   |  |
| Thermal p                                                                      | oower plant -General layout – working-Site Selection– materials required      | 7 |  |
| for therma                                                                     | al power plant - High Pressure Boilers and classification - coal handling and |   |  |
| its metho                                                                      | ds, stages in coal storage- Fuel burning-Stoker firing-overfeed stoker        |   |  |
| -underfee                                                                      | ed stokers-chain grate stoker, Pulverized fuel handling system-               |   |  |
| Pulverizat                                                                     | ion of coal-Ash handling system- Gravity system- electrostatic                |   |  |
| precipitation (ESP) system-Advantages and disadvantages-limitations of Thermal |                                                                               |   |  |
| power pla                                                                      | nt.                                                                           |   |  |



THEORY

| L | Т | Ρ | С |
|---|---|---|---|
| 3 | 0 | 0 | 3 |

| UNIT III                                                                              | POWER FROM RENEWABLE ENERGY                                                   |    |  |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----|--|--|
| Hydroelec                                                                             | stric power plant- Introduction, storage and poundage, Selection of sites for | 7  |  |  |
| hydroelec                                                                             | tric power plant-General layout and essential elements of Hydroelectric       |    |  |  |
| power pla                                                                             | ant and its working- Advantages and limitations of hydroelectric power        |    |  |  |
| plant. Sol                                                                            | ar power plant-Introduction-layout, Solar cell fundamentals & classification  |    |  |  |
| – maxim                                                                               | um power point tracker (MPPT) and solar panel. Wind power plant:              |    |  |  |
| Introducti                                                                            | on, -Factors affecting distribution of Wind energy, Variation of wind speed   |    |  |  |
| with heig                                                                             | ht and time-Horizontal axis wind turbine (HAWT)-types of rotors-Vertical      |    |  |  |
| axis wind turbine- types of rotors- advantages and limitations of Wind power plant.   |                                                                               |    |  |  |
| UNIT IV                                                                               | NUCLEAR POWER PLANT                                                           |    |  |  |
| Nuclear p                                                                             | ower plant-introduction-nuclear fuels, nuclear fission and fusion, working    | 7  |  |  |
| of a nuclear power plant, types of reactors- pressurized water reactor- boiling water |                                                                               |    |  |  |
| reactor- CANDU type reactor - fast breeder reactor - effect of nuclear radiation-     |                                                                               |    |  |  |
| different                                                                             | methods for nuclear waste disposal-low, medium and high-level waste           |    |  |  |
| disposal,                                                                             | Advantages -disadvantages- limitations- Safety measures for Nuclear           |    |  |  |
| Power pla                                                                             | nts.                                                                          |    |  |  |
| UNIT V                                                                                | DIESEL POWER PLANT AND GAS TURBINE POWER PLANT                                |    |  |  |
| Diesel p                                                                              | ower plant- layout -Components and the working- Advantages                    | 7  |  |  |
| -disadvan                                                                             | tages- limitations. Gas turbine power plant- Schematic diagram & working      |    |  |  |
| of open                                                                               | and closed cycle gas turbine power plant, Components of Gas                   |    |  |  |
| turbine-c                                                                             | ompressor, combustion chamber, gas turbine, vortex blading, gas turbine       |    |  |  |
| fuels, Gas turbine power plants in India- Advantages -disadvantages- limitations of   |                                                                               |    |  |  |
| Gas turbir                                                                            | ne power plant.                                                               |    |  |  |
|                                                                                       | Revision + Test                                                               | 10 |  |  |
|                                                                                       | Total                                                                         | 45 |  |  |



## Suggested list of Students Activity,

Other than classroom learning, the following are the suggested student related co-curricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course.

- 1. Students are advised to visit a nearby power plant to understand more about the subject and prepare a report consisting of
  - a) Various advanced systems
  - b) Various Standards
  - c) Maintenance of components of power plant observed
- 2. Prepare/ Download the specifications of followings:
  - a) Steam Power plant equipment and elements
  - b) Gas turbine Power plant equipment and elements
  - c) Hydro Power plant equipment and elements
  - d) Diesel Power plant equipment and elements

#### **Reference Books:**

- 1. Power plant engineering, G. R. Nagpal, Khanna publishers.
- 2. Power plant engineering, Arora and Domkundwar, Dhanpat rai & CO (P) LTD.
- 3. Power Plant Engineering, Dr. P. C. Sharma, S. K. Kataria & Sons Publications.
- 4. Power plant engineering, P. K. Nag, McGraw Hill India.
- 5. A Text Book of Power Plant Engineering, R K Rajput, Laxmi Publications.

## Web reference

- https://www.youtube.com/playlist?list=PLLy\_2iUCG87BT8H9uMufjrcPF5e6Qd2bz
- https://www.youtube.com/watch?v=3dJAtHaSQ98
- https://www.youtube.com/watch?v=kbuLfXgw4Gs
- https://www.youtube.com/watch?v=68-o35vWTAc
- https://www.youtube.com/watch?v=vrp0ptd03mg

## **END SEMESTER QUESTION PATTERN - Theory Exam**

## Duration: 3 Hrs.

## Max. Marks: 100

**Note:** Answer Ten questions by selecting two questions from each unit. Each question carries 10 marks each.

## Instruction to the Question Setters

Four questions will be asked from every unit, students should write any two questions for 10 marks. The question may have two subdivisions only.



| 1020236241 | MED Equipment Servicing | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  |                         | 1 | 0 | 4 | 3 |

#### Introduction:

MEP Equipment servicing is required in a large number of commercial and industrial applications. This content would be useful in identifying the defects and servicing of MEP equipments. The knowledge and skill of various equipments of HVAC systems, electrical systems and plumbing systems will be very useful in maintaining MEP systems in commercial buildings

#### **Course Objectives:**

- To know the types of equipment's in HVAC systems.
- To know the functions of HVAC systems, electrical systems and plumbing systems.
- Practice with servicing of HVAC equipment in the industry.
- Describe the procedure for maintaining of MEP equipment.
- Practicing and servicing of electrical and plumbing equipment.

#### **Course Outcomes**

On successful completion of this course the student will be able to,

- CO 1 : Describe the working of HVAC equipment in the industry.
- CO 2 : Explain the function of electrical equipments and their periodic maintenance.
- CO 3 : Describe the functions of plumbing systems and their service procedure

CO 4 : Demonstrate the skills in identifying and rectifying the defects in MEP equipments.

CO 5 : Explain the service procedure for MEP equipments in the industry.

#### **Pre-requisites:**

Thermodynamics, fundamentals of refrigeration and air-conditioning, functions of HVAC components



| 1020236241 | MED Equipment Servicing | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  | MEP Equipment Servicing | 1 | 0 | 4 | 3 |

CO/PO Mapping

| CO / PO | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 1   |     |     | 3   |     |     |     |
| C02     | 1   |     |     | 3   |     |     |     |
| C03     | 1   |     |     | 3   |     |     |     |
| C04     | 1   |     |     | 3   |     |     |     |
| C05     | 1   |     |     | 3   |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

## Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyse potential sources of error in case of discrepancies



#### Assessment Methodology:

|              | Co        | ontinuous Asses | sment (40 mark | (s)       | End           |
|--------------|-----------|-----------------|----------------|-----------|---------------|
|              |           |                 |                |           | Semester      |
|              | CA1       | CA2             | CA3            | CA4       | Examination   |
|              |           |                 |                |           | (60 marks)    |
| Mada         | Practical | Practical       | Written Test   | Practical | Practical     |
| WOUE         | Test      | Test            | Theory         | Test      | Examination   |
| Portion      | Cycle I   | Cycle II        | All Portions   |           | All Exercises |
| Fortion      | Exercises | Exercises       |                |           | Experiments   |
| Duration     | 2 Periods | 2 Periods       | 3 Hours        | 3 Hours   | 3 hours       |
| Exam Marks   | 60        | 60              | 100            | 100       | 100           |
| Converted to | 10        | 10              | 15             | 15        | 60            |
| Marks        | 10        | 10              | 10             | 10        | 00            |
| Marks        | 10 15 15  |                 | 15             | 60        |               |
| Tentative    | 7th Week  | 1/Ith Wook      | 15th Week      | 16th Week |               |
| Schedule     |           |                 |                |           |               |

Note:

**CA1 and CA2:** All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total



marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

## The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The Procedure, Sketch and Result / Output should be written by the student manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DoTE Official.

| PART | DESCRIPTION                                  | MARKS |
|------|----------------------------------------------|-------|
| Α    | Aim & Tools required                         | 10    |
| В    | Procedure / Sketch / Setting / Tool Handling | 20    |
| С    | Adjustment / Dismantling / Assembling        | 20    |
|      | TOTAL                                        | 50    |
| D    | Practical Documents (As per the portions)    | 10    |
|      |                                              | 60    |

## SCHEME OF EVALUATION

Cycle - I - Exercise 1, 2, 3,4 and 5.

Cycle - II - Exercise 6, 7, 8, 9 and 10.

**CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



PRACTICUM

#### **Question pattern – Written Test Theory**

| Description Marks |                                                 |              |           |
|-------------------|-------------------------------------------------|--------------|-----------|
| Part – A          | 30 MCQ Questions.                               | 30 X 1 Mark  | 30 Marks  |
| Part – B          | 7 Questions to be answered out of 10 Questions. | 7 X 10 Marks | 70 Marks  |
| TOTAL             |                                                 |              | 100 Marks |

**CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

## SCHEME OF EVALUATION

#### Model Practical Examination and End Semester Examination - Practical Exam

| PART | RT DESCRIPTION                               |     |  |  |
|------|----------------------------------------------|-----|--|--|
| Α    | Aim & Tools required                         | 10  |  |  |
| В    | Procedure / Sketch / Setting / Tool Handling | 20  |  |  |
| С    | Adjustment / Dismantling / Assembling        | 20  |  |  |
| D    | Troubles / Report                            | 10  |  |  |
| E    | Written test (MCQ)                           | 30  |  |  |
| F    | F Viva Voce                                  |     |  |  |
|      | TOTAL                                        | 100 |  |  |

Note: For the written test 30 MCQ shall be asked from the theory portions.



| 1020236241 | MED Equipment Servicing | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  | MEP Equipment Servicing | 1 | 0 | 4 | 3 |

# **Syllabus Contents**

| Theory | y Portion - Unit – I                                                           |   |
|--------|--------------------------------------------------------------------------------|---|
| Basic  | concept of thermodynamics – heat – temperature – pressure.                     | 9 |
| Introd | uction of central plant air conditioning – DX system – Chilled water system –  |   |
| Air ha | ndling unit – fan coil unit – chilled water pump - water cooled chiller – air  |   |
| cooled | I chiller – cooling tower – construction and working – Maintenance schedule    |   |
| – serv | icing procedure                                                                |   |
| Practi | cal Exercises                                                                  |   |
| Exerci | se 1: Water heater                                                             | 5 |
| a.     | Drain your tank and remove sediment.                                           |   |
| b.     | Check your anode rod regularly, as it's an important part of the water heater. |   |
| C.     | If you notice your water heater leaking, it may be caused by a loose drain     |   |
|        | valve. Tighten with a wrench until snug.                                       |   |
| d.     | Test the temperature release valve.                                            |   |
| e.     | Insulate its pipes and the heater.                                             |   |
| Exerci | se 2: Water pump                                                               |   |
| a.     | Dismantle and assemble a pump from the chilled water pipe line.                |   |
| b.     | Dismantle and assemble of pump casing                                          |   |
| C.     | Alignment of pump-motor shaft                                                  |   |
| Exerci | se 3: Cooling Tower                                                            | 5 |
| a.     | Check the fan motor assembly                                                   |   |
| b.     | Align the fan motor assembly                                                   |   |
| C.     | Check the float valve operation                                                |   |
| d.     | Check the water nozzles and replace if blocked.                                |   |
| Exerci | se 4: Plumbing pump                                                            | 5 |
| a.     | Dismantling and assembly of pump casing                                        |   |
| b.     | Check and replace shaft seal                                                   |   |
| C.     | Check and replace impeller                                                     |   |



| Exercis | se 5: Fire Fighting pumps                                              | 5 |
|---------|------------------------------------------------------------------------|---|
| a.      | Check automatic start by opening a test line to reduce system pressure |   |
| b.      | Verify that relief valves operate properly                             |   |
| C.      | Check the fuel tank level for diesel pump                              |   |
| d.      | Check the oil and fuel filter in the diesel engine                     |   |
| e.      | Check the battery                                                      |   |

| Theory Portion - Unit – II                                                      |   |
|---------------------------------------------------------------------------------|---|
| Electrical system - basics of electricity - electrical equipments - generator - | 6 |
| transformer – water heater – working and construction – servicing and           |   |
| maintenance procedure                                                           |   |
| Plumbing system – basics of fluid flow – hot and cold water – drainage system – |   |
| water treatment plant – pumps – valves – strainer - servicing and maintenance   |   |
| procedure.                                                                      |   |
| Practical Exercises                                                             |   |
| Exercise 6: Cleaning AC Unit.                                                   | 5 |
| a. Filter cleaning                                                              |   |
| b. Cooling coil cleaning                                                        |   |
| c. Blower cleaning                                                              |   |
| d. Condenser coil cleaning                                                      |   |
| e. Condenser fan cleaning                                                       |   |
| Exercise 7: Checking AC unit                                                    | 5 |
| a. Checking refrigerant pressure                                                |   |
| b. Check the drier .                                                            |   |
| c. Check the compressor.                                                        |   |
| d. Check the temperature control.                                               |   |

e. Check the supply air flow rate and temperature





| 1020236241 | MED Equipment Servicing | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  | MEP Equipment Servicing | 1 | 0 | 4 | 3 |

| Exerci | se 8: Transformer                                      | 5  |
|--------|--------------------------------------------------------|----|
| a.     | Check the transformer oil level and top up if required |    |
| b.     | Clean the breather.                                    |    |
| C.     | Check the bushing filled with oil to check oil level   |    |
| d.     | Check the leakage of oil from any point                |    |
| e.     | Check the oil pump                                     |    |
| f.     | Check air fan                                          |    |
| Exerci | <b>se 9:</b> Genset (Engine Generator)                 | 5  |
| a.     | Test Batteries                                         |    |
| b.     | Check intake and exhaust                               |    |
| C.     | Inspect wiring / electrical system                     |    |
| Exerci | <b>se 10:</b> Genset (Engine Generator)                | 5  |
| a.     | Check filters and replace if necessary                 |    |
| b.     | Check oil and replace as recommended                   |    |
| C.     | Check fuel filter and replace if blocked               |    |
| d.     | Check and replace spark plugs                          |    |
|        | Assessment Test and Revision                           | 10 |
|        | Total                                                  | 75 |

#### Text and Reference Books:

- 1. ASHRAE Hand book Heating, Ventilating, and Air-Conditioning SYSTEMS AND EQUIPMENT
- 2. The Institute of Plumbing Plumbing Engineering Services Design Guide
- 3. Principles of Electrical Engineering and Electronics by V.K Mehta and Rohit Mehta

## Web References

- https://www.youtube.com/watch?v=PVGWHysJj78
- https://www.youtube.com/watch?v=yEzCvjQ2sNY
- https://www.youtube.com/watch?v=q-Oooe0G7\_c
- https://www.youtube.com/watch?v=Ct1WnU-q9Qs
- https://www.youtube.com/watch?v=-5ccNAHF7I8



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

- https://www.youtube.com/watch?v=f0tKsDjWgT8
- https://www.youtube.com/watch?v=KTn2khCDqyw
- https://www.youtube.com/watch?v=8jxRn-T\_LCs
- https://www.youtube.com/watch?v=cDnrpCX58bQ
- https://www.youtube.com/watch?v=\_FyePOpQkNo
- https://www.youtube.com/watch?v=3Z7cEPQGX3E
- https://www.youtube.com/watch?v=ouKCbxuW4r4

#### Equipment / Facilities required to conduct the Practical Course.

#### **MEP Equipment List**

- 1. Generator
- 2. Fire pumps
- 3. Sump pumps
- 4. Water treatment plant
- 5. Plumbing pumps, valves and strainer
- 6. Exhaust fans
- 7. Dx AC units
- 8. PAC units
- 9. Air cooled chiller
- 10. Water cooled chiller
- 11. Chilled water pumps
- 12. Cooling tower
- 13. Condenser water pumps
- 14. Air separator

Based on the requirement the quantity should be kept.



## END SEMESTER EXAMINATION - Practical Exam

#### Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

## SCHEME OF EVALUATION

| Part | Description                                  | Marks |
|------|----------------------------------------------|-------|
| Α    | Aim & Tools required                         | 10    |
| В    | Procedure / Sketch / Setting / Tool Handling | 20    |
| С    | Adjustment / Dismantling / Assembling        | 20    |
| D    | Troubles / Report                            | 10    |
| E    | Written test (Theory Portions)               | 30    |
| F    | Viva Voce                                    | 10    |
|      | TOTAL MARKS                                  | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



| 1020236242 | Maintenance of Machine Toola | L | Т | Ρ | С |
|------------|------------------------------|---|---|---|---|
| PRACTICUM  |                              | 1 | 0 | 4 | 3 |

### Introduction:

Diploma technocrats who are in the field of maintenance of machine tools should have a thorough knowledge about the dismantling and assembly procedure, installation, maintenance and repair of the machines and know about the technology used for the prediction of premature failure of components in advance.

#### **Course Objectives:**

- To know the instruments used for maintenance
- To know the advanced maintenance techniques of machine tools to increase the duration of life of the machines.
- To know the procedure for dismantling and assembly of equipment.
- To know the instruments used for machine tool testing.
- To know the different alignment techniques and accuracy of machine tools.

#### Course Outcomes

CO1: Setup instrument for machine tool maintenance.

CO2: Acquire knowledge of maintenance and troubleshooting of Machines and its components

CO3: Acquire knowledge for dismantling and assembly of equipment's

CO4: Setup instrument for machine tool testing

CO5. Acquire knowledge on machine tool alignment and the manufacturing accuracy of machine tools.

#### **Pre-requisites:**

Basic workshop practice, Workshop practices, Machine Tool Technology



| 1020236242 | Maintenance of Machine Tools | L | Т | Ρ | С |
|------------|------------------------------|---|---|---|---|
| PRACTICUM  |                              | 1 | 0 | 4 | 3 |

CO/PO Mapping

| CO / PO | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   |     |     | 3   |     |     | 3   |
| C02     | 3   | 3   |     | 3   |     | 3   | 3   |
| C03     | 3   | 3   |     | 3   |     | 3   | 3   |
| C04     | 3   |     |     | 3   |     |     | 3   |
| C05     | 3   | 3   |     | 3   |     | 3   | 3   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

## Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyse potential sources of error in case of discrepancies



### Assessment Methodology:

|              | Co        | ontinuous Asses | sment (40 mark             | (s)          | End           |
|--------------|-----------|-----------------|----------------------------|--------------|---------------|
|              |           |                 |                            |              | Semester      |
|              | CA1       | CA2             | CA3                        | CA4          | Examination   |
|              |           |                 |                            |              | (60 marks)    |
| Mada         | Practical | Practical       | Written Test               | Practical    | Practical     |
| Mode         | Test      | Test            | Theory                     | Test         | Examination   |
| Portion      | Cycle I   | Cycle II        | All Portions All Evercises |              | All Exercises |
| Fortion      | Exercises | Exercises       |                            | All Excluses | Experiments   |
| Duration     | 2 Periods | 2 Periods       | 3 Hours                    | 3 Hours      | 3 hours       |
| Exam Marks   | 60        | 60              | 100                        | 100          | 100           |
| Converted to | 10        | 10              | 15                         | 15           | 60            |
| Marks        | 10        | 10              | 10                         | 10           | 00            |
| Marks        | 1         | 10 15 15        |                            | 60           |               |
| Tentative    | 7th Week  | 14th Week       | 15th Week                  | 16th Week    |               |
| Schedule     |           |                 |                            |              |               |

Note:

• CA1 and CA2: All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total



marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

## The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The Procedure, Sketch and Report / Output should be written by the student manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DoTE Official.

| PART  | DESCRIPTION                                        | MARKS |  |  |
|-------|----------------------------------------------------|-------|--|--|
| Α     | Dismantling / Procedure                            | 20    |  |  |
| В     | Troubleshooting procedure/ Geometrical test        | 20    |  |  |
| С     | Assembling & Inspection Report / Test Chart        | 10    |  |  |
| TOTAL |                                                    | 50    |  |  |
| D     | <b>D</b> Practical Documents (As per the portions) |       |  |  |
|       | 60                                                 |       |  |  |

## SCHEME OF EVALUATION

Cycle - I - Exercise 1, 2, 3,4 and 5.

Cycle - II - Exercise 6, 7, 8, 9 and 10.

**CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



PRACTICUM

| Descriptio | n                                               | Marks        |           |  |
|------------|-------------------------------------------------|--------------|-----------|--|
| Part – A   | 30 MCQ Questions.                               | 30 X 1 Mark  | 30 Marks  |  |
| Part – B   | 7 Questions to be answered out of 10 Questions. | 7 X 10 Marks | 70 Marks  |  |
| TOTAL      |                                                 | -            | 100 Marks |  |

• **CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

## SCHEME OF EVALUATION

#### Model Practical Examination and End Semester Examination - Practical Exam

| PART | DESCRIPTION                                 | MARKS |
|------|---------------------------------------------|-------|
| Α    | Aim & Tools Required                        | 10    |
| В    | Dismantling / Procedure                     | 20    |
| С    | Troubleshooting procedure/ Geometrical test | 20    |
| D    | Assembling & Inspection Report / Test Chart | 10    |
| E    | Written Test (Theory Portion)               | 30    |
| F    | Viva Voce                                   | 10    |
|      | TOTAL                                       | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



## DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI – 600 025 REGULATION 2023

С

3

# **Syllabus Contents**

| Theory Portion                                                                           |    |
|------------------------------------------------------------------------------------------|----|
| MAINTENANCE ACTIVITY OF MACHINE TOOLS:                                                   | 15 |
| Maintenance: Objective-Definition –Types of maintenance-Advantages of good               |    |
| maintenance-Disadvantages of bad maintenance-Instruments needed for                      |    |
| maintenance.                                                                             |    |
| Maintenance of Lathe: Lathe maintenance-Drive belts- Adjusting belt tension, Gib         |    |
| adjustment(cross slide, Compound slide),Wiper pads, Adjusting the Tailstock              |    |
| clamp.                                                                                   |    |
| TESTING OF MACHINE TOOLS                                                                 |    |
| Measuring Equipment and Tools used for testing of machine tools:                         |    |
| Dial gauges – test mandrels – straight edges - squares- spirit levels- level             |    |
| measurement by water level- alignment by wire and measuring microscope.                  |    |
| DETAILS FOR TESTING VARIOUS MACHINE TOOLS:                                               |    |
| Machine tool testing purpose-Types of geometrical checks on machine                      |    |
| tools-Various test conducted on machine tools-Alignment test on lathe, surface           |    |
| grinding and milling machine.                                                            |    |
| Practical Exercises                                                                      |    |
| Maintenance:                                                                             |    |
| <b>Exercise 1:</b> Lathe maintenance-Drive belts- Adjusting belt tension, Gib adjustment | 5  |
| (cross slide,Compound slide), Wiper pads checking, Adjusting the Tailstock clamp.        |    |
| Exercise 2: Slotter maintenance- Diving Pulley alignment checking-Belt tension           | 5  |
| adjustment – Pinion gear inspection , table jib adjustment.                              |    |
| Exercise 3: Practice on oil removing & filling for a gear box. Inspection of the         | 5  |
| drained oil for contaminants & wear debris with focus on visual inspection.              |    |
| Preparation of coolants.                                                                 |    |
| Exercise 4: Drawing and drafting of machine part as per requirement (in case of          | 5  |
| worn out/ modification)                                                                  |    |



| 1020236242 | Maintenance of Mashine Table | L | Т | Ρ | С |
|------------|------------------------------|---|---|---|---|
| PRACTICUM  |                              | 1 | 0 | 4 | 3 |

| Exercise 5: Dismantle, inspect and assemble the Lead screw and Half nut of the         | 5  |
|----------------------------------------------------------------------------------------|----|
| lathe.                                                                                 |    |
| <b>Exercise 6:</b> Dismantle, inspect and assemble the Three jaw chuck./Four jaw chuck | 5  |
| <b>Exercise 7:</b> Dismantle, inspect and assemble the Drill chuck.                    | 5  |
| <b>Exercise 8:</b> Surface roughness measurement on a machined component.              | 5  |
| Machine Tool Alignment :                                                               |    |
| Exercise 9: Conduct the following test for the surface grinding machine with           | 5  |
| horizontal grinding wheel spindle and prepare a test chart.                            |    |
| a. Check the level of work table in longitudinal and transverse direction.             |    |
| b. Check the T-slots parallel with table movement.                                     |    |
| c. Check the T-slots square with transverse movement of table.                         |    |
| d. Check the wheel spindle for true running and axial slip.                            |    |
| e. Check the wheel spindle parallel with surface of table.                             |    |
| Exercise 10: Conduct the following test for the horizontal milling machine and         | 5  |
| prepare a test chart.                                                                  |    |
| a. Check the flatness of the work table surface in longitudinal and transverse         |    |
| direction                                                                              |    |
| b. Check the true running of the internal taper of main spindle                        |    |
| c. Check the parallelism of the clamping surface of the work table in its longitudinal |    |
| motion.                                                                                |    |
| d. Check the parallelism of the transverse movement of the work table to the main      |    |
| spindle in vertical and horizontal plane.                                              |    |
| e. Check the squareness of the table surface with column face.                         |    |
| Assessment Test and Revision                                                           | 10 |
| Total                                                                                  | 75 |



## Suggested List of Students Activity:

- 1. Students can visit the industry and workshops nearby and observe how the maintenance of machine tools were done.
- 2. Study the alignment test on machine tools such as Drilling and shaping.

## Text and Reference Books:

- 1. Er.Sushil kumar Srivastava Maintenance Engineering Reprint2016 S.Chand publication.
- 2. Georg Schlesinger, F. Koenigsberger , M. Burdekin TESTING MACHINE TOOLS 8th edition- Pergamon Press-1978.
- 3. K.J.Bag- Preventive Maintenance ISTE Professional centre continuing education Programme- Distributed by ISTE Professional centre AnnaUniversity campus, Chennai.

#### Web-based/Online Resources:

 https://www.youtube.com/watch?v=f58SW0Hwcf0 -Principle of Maintenance -NPTEL-IIT Kharagpur



| 1020236242 | Maintenance of Machine Teals | L | Т | Ρ | С |
|------------|------------------------------|---|---|---|---|
| PRACTICUM  |                              | 1 | 0 | 4 | 3 |

## END SEMESTER EXAMINATION - Practical Exam

#### Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

| PART | DESCRIPTION                                 | MARKS |
|------|---------------------------------------------|-------|
| Α    | Aim & Tools Required                        | 10    |
| В    | Dismantling / Procedure                     | 20    |
| С    | Troubleshooting procedure/ Geometrical test | 20    |
| D    | Assembling & Inspection Report / Test Chart | 10    |
| Е    | Written Test (Theory Portions)              | 30    |
| F    | Viva Voce                                   | 10    |
|      | TOTAL                                       | 100   |

## SCHEME OF EVALUATION

Note: For the written test 30 MCQ shall be asked from the theory portions.



## Equipment / Facilities required to conduct the Practical Course.

| S.No | Name of the Equipment's         | Quantity Required   |
|------|---------------------------------|---------------------|
| 1.   | Lathe machine                   | 1 No                |
| 2.   | Surface grinding machine        | 1 No                |
| 3.   | Milling machine                 | 1 No                |
| 4.   | Slotting Machine                | 1 No                |
| 5.   | Surface roughness tester        | 1 No                |
| 6.   | Lead screw and nut              | 1 No                |
| 7.   | Three jaw chuck/ Four jaw chuck | 1 No                |
| 8.   | Drill chuck                     | 1 No                |
| 9.   | Dial gauge                      | 5 Nos.              |
| 10.  | Magnetic stand                  | 5 Nos.              |
| 11.  | Surface gauges                  | 5 Nos.              |
| 12.  | Spirit level                    | 5 Nos.              |
| 13.  | Spanners (DE/Ring/Box)          | Sufficient quantity |
| 14.  | Screw drivers                   | Sufficient quantity |
| 15.  | Allen screw sets                | Sufficient quantity |
| 16.  | Hammer                          | Sufficient quantity |
| 17.  | Test mandrels                   | Sufficient quantity |
| 18.  | Squares / Blocks                | Sufficient quantity |



#### Introduction:

Non-destructive testing (NDT) is a multidisciplinary profession that blends quality assurance and materials science. NDT is used to inspect and evaluate materials, components, or assemblies without destroying their serviceability. Through a set of test methods, skilled technicians identify cracks, voids, inclusions, and weld discontinuities, as well as identify misassembled subcomponents. This makes NDT crucial to help prevent catastrophic failures such as airplane and locomotive crashes, pipeline leaks and explosions, nuclear reactor failures, and ship disasters.

#### **Course Objectives:**

The objective of this course is to prepare the student,

- To learn about the various Non Destructive testing methods.
- To identify the types of equipment used for each Non-Destructive and Destructive Examination.
- To study about the process of Surface Testing Methods(LPT & MPT)
- To learn about the Sub Surface Testing methods(RT & UT)
- To study about the various applications of NDT Tests in Industries.

#### **Course Outcomes**

**CO1:** Explain NDT techniques which enable it to carry out various inspections in accordance with the established procedures.

**CO2:** Calibrate the instrument and inspect for in-service damage in the components.

**CO3:** Differentiate various defect types and select the appropriate NDT methods for better evaluation.

**CO4:** Communicate their conclusions clearly to specialist and non-specialist audiences.

**C05:** Prepare the testing and evaluation of the results for further analysis.

## Pre-requisites:

Knowledge of basic measuring instruments, material processing, and various types of materials defects.



| 1020236243 | NON DESTRUCTIVE TESTING | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  |                         | 1 | 0 | 4 | 3 |

## CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | -   | -   | 3   | -   | -   | -   |
| C02     | 3   | -   | -   | 3   | -   | -   | -   |
| C03     | 3   | -   | -   | 3   | -   | -   | -   |
| C04     | 3   | -   | -   | 3   | -   | -   | -   |
| C05     | 3   | -   | -   | 3   | -   | -   | -   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

#### Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their curiosity to learn.
- Implement task-based learning activities where students work on specific tasks or projects.
- Incorporate technology tools and resources, such as online platforms, interactive multimedia, and virtual communication tools, to enhance engagement and provide additional practice opportunities.
- Incorporate formative and summative assessments to gauge student progress and provide targeted feedback.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- All demonstrations/Hand-on practices may be followed in the real environment as far as possible.



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

#### **Assessment Methodology:**

|              | Cc         | End       |              |            |               |  |
|--------------|------------|-----------|--------------|------------|---------------|--|
|              |            |           |              |            | Semester      |  |
|              | CA1        | CA2       | CA3          | CA4        | Examination   |  |
|              |            |           |              |            | (60 marks)    |  |
| Mada         | Practical  | Practical | Written Test | Practical  | Practical     |  |
| Mode         | Test       | Test      | Theory       | Test       | Examination   |  |
| Portion      | Cycle I    | Cycle II  | All Portions |            | All Exercises |  |
| FOLION       | Exercises  | Exercises |              |            | Experiments   |  |
| Duration     | 2 Periods  | 2 Periods | 3 Hours      | 3 Hours    | 3 hours       |  |
| Exam Marks   | 60         | 60        | 100          | 100        | 100           |  |
| Converted to | 10         | 10        | 15           | 15         | 60            |  |
| Marks        | 10         | 10        | 10           | 15         | 00            |  |
| Marks        | 1          | 0         | 15           | 15         | 60            |  |
| Tentative    | 7th Week   | 14th Week | 15th Week    | 16th Week  |               |  |
| Schedule     | / III Week |           | Totti Week   | Totti Week |               |  |

Note:

**CA1 and CA2:** All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.



| 1020236243 | NON DESTRUCTIVE TESTING | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  |                         | 1 | 0 | 4 | 3 |

## The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The Procedure, Sketch and Result / Output should be written by the student manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DoTE Official.

| PART  | DESCRIPTION                               | MARKS |
|-------|-------------------------------------------|-------|
| Α     | Procedure / Preparation                   | 15    |
| В     | Observation / Sketch                      | 20    |
| С     | Accuracy                                  | 15    |
| TOTAL |                                           | 50    |
| D     | Practical Documents (As per the portions) | 10    |
|       |                                           | 60    |

## SCHEME OF EVALUATION

Cycle - I - Exercise 1, 2, 3 and 4.

Cycle - II - Exercise 5, 6, 7 and 8..

**CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



| 1020236243 | NON DESTRUCTIVE TESTING | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  |                         | 1 | 0 | 4 | 3 |

## **Question pattern – Written Test Theory**

| Description |                                                 | Marks        |           |  |
|-------------|-------------------------------------------------|--------------|-----------|--|
| Part – A    | 30 MCQ Questions.                               | 30 X 1 Mark  | 30 Marks  |  |
| Part – B    | 7 Questions to be answered out of 10 Questions. | 7 X 10 Marks | 70 Marks  |  |
| TOTAL       |                                                 |              | 100 Marks |  |

**CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

## SCHEME OF EVALUATION

## Model Practical Examination and End Semester Examination - Practical Exam

| PART  | DESCRIPTION           | MARKS |
|-------|-----------------------|-------|
| Α     | Procedure/Preparation | 15    |
| В     | Observation/Drawing   | 20    |
| С     | Accuracy              | 15    |
| D     | Result                | 10    |
| Е     | Written Test          | 30    |
| F     | Viva Voce             | 10    |
| TOTAL |                       | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.


PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

## **Syllabus Contents**

| Theory Portion - Unit I                                                                     |   |
|---------------------------------------------------------------------------------------------|---|
| Introduction: Non destructive testing (NDT) and its comparison with destructive             | 8 |
| testing, Defects/ flaws due to primary processing, secondary processing and                 |   |
| inservice, Types of defects determined by NDT, Common non-destructive testing               |   |
| techniques, Advantages, limitations and applications of NDT.                                |   |
| Visual Inspection: Principle of visual Inspection, Defects which can be detected by         |   |
| unaided visual Inspection, Optical aids used for visual inspection, Advantages and          |   |
| limitations of visual inspection.                                                           |   |
| Liquid Penetrant Test: Advantages and limitations of Liquid Penetrant Test (LPT),           |   |
| Physical principles of LPT, Procedure employed for LPT, Penetrant methods,                  |   |
| Materials used in LPT.                                                                      |   |
| Magnetic Particle Test: Advantages and limitations of Magnetic Particle Test                |   |
| (MPT), Procedure of MPT, Magnetizing Magnetic particles and suspending liquids,             |   |
| Detectable discontinuities, Non-relevant indications, Applications.                         |   |
| Practical Exercises                                                                         |   |
| <b>Exercise 1:</b> Detect the cracks in the specimen using Visual Inspection and ring test. | 6 |
| <b>Exercise 2:</b> Detect the Small surface flaws in the specimen using Microscopy          | 6 |
| Examination test.                                                                           |   |
| <b>Exercise 3:</b> Detect the Subsurface flaws in the specimen using Radiography.           | 6 |
| <b>Exercise 4:</b> Detecting Surface flaws in specimen using Die-penetration test.          | 6 |
| Theory Portion - Unit II                                                                    |   |
| Eddy Current Test: Advantages and limitations of Eddy Current Test (ECT),                   | 7 |
| Operation variables, Eddy current instrumentation, Reference standards,                     |   |
| Applications.                                                                               |   |
| Ultrasonic Test: Advantages and limitations of Ultrasonic Test (UT), General                |   |
| characteristics of ultrasonic waves, Wave propagation and types of ultrasonic               |   |



| 1020236243 | NON DESTRUCTIVE TESTING | L | Т | Ρ | С |
|------------|-------------------------|---|---|---|---|
| PRACTICUM  |                         | 1 | 0 | 4 | 3 |

| A defense of the second state of the second st |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| waves, Major variables in UT, Angle beam techniques, Immersion testing,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| Radiography Test: Uses/ Applicability of radiography, Advantages and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| limitations of Radiography Test (RT), Interaction between penetrating radiation &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| matter (Attenuation), Image conversion media, Film radiography, Real time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| radiography.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Other Non-destructive Inspection Techniques: Acoustic emission inspection,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| Microwave inspection, Thermal inspection, Electromagnetic techniques for residual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| stress measurements, Optical holography, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| Practical Exercises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| <b>Exercise 5:</b> Detect of Surface flaws in specimen using Ultrasonic test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6  |
| <b>Exercise 6:</b> Detect the cracks in specimen using Magnetic particle test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6  |
| <b>Exercise 7:</b> Detect the Surface and near surface flaws in specimen using Eddy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6  |
| Current test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| <b>Exercise 8:</b> Case Study experiment - Can analyze entire structure of Any one used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6  |
| machine components using Acoustic emission test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| Assessment Test + Revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75 |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

### **TEXT BOOKS**

- "Non Destructive Evaluation and Quality Control", Metals Handbook, Vol. 17, 9th Ed., ASM.1989
- 2. Srivastava, K.C., "Handbook of Magnetic Particle Testing", Oscar publications. 1998
- 3. Hull, B., "Non Destructive Testing", Springer. 2012
- 4. Dr.V.Jayakumar,Dr.K.Elangovan"Non-Destructive Testing of Materials"Lakshmi Publications,Chennai,2017
- 5. Baldev Raj, Jayakumar T, Thavasimuthu M, Practical Non- Destructive Testing, 3rd Ed., Narosa. 2019



| PRACTICUM 1 0 4 3 | 1020236243 | NON DESTRUCTIVE TESTING | L | Т | Ρ | С |
|-------------------|------------|-------------------------|---|---|---|---|
|                   | PRACTICUM  |                         | 1 | 0 | 4 | 3 |

#### Web-based/Online Resources:

- www.ndt-ed.org
- www.krautkramer.com.au
- https://onlinecourses.nptel.ac.in/noc23\_mm05

#### **END SEMESTER EXAMINATION - Practical Exam**

#### Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

| S | СН  | IEN | 1E | OF  | ΕV | AL | UAT           | ΓΙΟΝ |
|---|-----|-----|----|-----|----|----|---------------|------|
| - | ••• |     |    | ••• | _  |    | <b>U</b> / () |      |

| PART | DESCRIPTION           | MARKS |  |  |  |
|------|-----------------------|-------|--|--|--|
| Α    | Procedure/Preparation | 15    |  |  |  |
| В    | B Observation/Drawing |       |  |  |  |
| С    | Accuracy              | 15    |  |  |  |
| D    | Result                | 10    |  |  |  |
| E    | E Written Test        |       |  |  |  |
| F    | F Viva Voce           |       |  |  |  |
|      | 100                   |       |  |  |  |

Note: For the written test 30 MCQ shall be asked from the theory portions.



| 1020236244 | Process Automation | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICUM  | Process Automation | 1 | 0 | 4 | 3 |

#### Introduction:

Process automation uses technology to automate complex business processes. It typically has three functions: automating processes, centralizing information, and reducing the requirement for input from people. It is designed to remove bottlenecks, reduce errors and loss of data, all while increasing transparency, communication across departments, and speed of processing. Process automation uses technology to automate complex business processes. It typically has three functions: automating processes, centralizing information, and reducing the requirement for input from people. It is designed to remove bottlenecks, reduce errors and loss of data, all while increasing transparency, communication across departments, and speed of processing.

#### **Course Objectives:**

The objective of this course is to enable the student to

- Design and operate pneumatic circuits.
- Design and operate fluid power circuits.
- Use PLC system and its elements for process control.
- Familiarize the working of function blocks in PLC
- Use ON-Delay timer to control a motor
- Use OFF-Delay timer to control a motor
- Use counter function block (Up counter and Down counter)
- Control the automatic operation of pneumatic cylinder using PLC

### **Course Outcomes**

On successful completion of this course, the student will be able to

- CO1: Explain the working of hydraulic and pneumatics systems and its elements.
- CO2: Familiarise the various symbols of hydraulic and pneumatics

### systems

- CO3: Construct the Hydraulic and Pneumatics circuits for different applications
- CO4: Explain the working of logic gates and features of PLC
- CO5: Apply the Logic gates and PLC for the automatic operations of hydraulics and pneumatic machines.



| 1020236244 | Process Automation | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICUM  | FIDCESS Automation | 1 | 0 | 4 | 3 |

## Pre-requisites:

Fluid Mechanics, Basic Electrical and Mechanical Engineering

## CO/PO Mapping

| C0 / P0 | P01 | P02 | P03 | PO4 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | -   | -   | 3   |     |     |     |
| C02     | 3   | -   | -   | 3   |     |     |     |
| C03     | 3   | -   | -   | 3   |     |     |     |
| CO4     | 3   | -   | -   | 3   |     |     |     |
| C05     | 3   | -   | -   | 3   |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

### Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their curiosity to learn.•Implement task-based learning activities where students work on specific tasks or projects.
- Incorporate technology tools and resources, such as online platforms, interactive multimedia, and virtual communication tools, to enhance engagement and provide additional practice opportunities.
- Incorporate formative and summative assessments to gauge student progress and provide targeted feedback.
- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- All demonstrations/Hand-on practices may be followed in the real environment as far as possible.



| 1020236244 | Process Automation | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICUM  | Process Automation | 1 | 0 | 4 | 3 |

#### Assessment Methodology:

|                | Co        | ontinuous Asses | sment (40 mark | (s)           | End           |
|----------------|-----------|-----------------|----------------|---------------|---------------|
|                |           |                 |                |               | Semester      |
|                | CA1       | CA2             | CA3            | CA4           | Examination   |
|                |           |                 |                |               | (60 marks)    |
| Mada           | Practical | Practical       | Written Test   | Practical     | Practical     |
| WOUE           | Test      | Test            | Theory         | Test          | Examination   |
| Portion        | Cycle I   | Cycle II        | All Portions   |               | All Exercises |
|                | Exercises | Exercises       | AILLOLIOUS     | All LACICISCS | Experiments   |
| Duration       | 2 Periods | 2 Periods       | 3 Hours        | 3 Hours       | 3 hours       |
| Exam Marks     | 60        | 60              | 100            | 100           | 100           |
| Converted to   | 10        | 10              | 15             | 15            | 60            |
| Marks          | 10        | 10              | 10             | 10            | 00            |
| Marks          | 1         | 0               | 15             | 15            | 60            |
| Internal Marks |           |                 |                |               |               |
| Tentative      | 7th Wook  | 1/th Wook       | 15th Wook      | 16th Wook     |               |
| Schedule       |           |                 |                |               |               |

Note:

**CA1 and CA2:** All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.



| 1020236244 | Process Automation | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICUM  |                    | 1 | 0 | 4 | 3 |

#### The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The Procedure, Sketch and Result / Output should be written by the student manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DoTE Official.

| PART | DESCRIPTION                               | MARKS |
|------|-------------------------------------------|-------|
| Α    | Procedure / Preparation                   | 15    |
| В    | Circuit / Program                         | 20    |
| С    | Execution / Connection                    | 15    |
|      | TOTAL                                     | 50    |
| D    | Practical Documents (As per the portions) | 10    |
|      |                                           | 60    |

#### SCHEME OF EVALUATION

Cycle - I - Exercise 1, 2, 3,4 and 5.

Cycle - II - Exercise 6, 7, 8, 9 and 10.

**CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



| 1020236244 |                    | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICUM  | Process Automation | 1 | 0 | 4 | 3 |

### **Question pattern – Written Test Theory**

| Descriptio | n                                               | Marks        |           |
|------------|-------------------------------------------------|--------------|-----------|
| Part – A   | 30 MCQ Questions.                               | 30 X 1 Mark  | 30 Marks  |
| Part – B   | 7 Questions to be answered out of 10 Questions. | 7 X 10 Marks | 70 Marks  |
| TOTAL      |                                                 |              | 100 Marks |

**CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

## SCHEME OF EVALUATION

Model Practical Examination and End Semester Examination - Practical Exam

| PART  | DESCRIPTION             | MARKS |
|-------|-------------------------|-------|
| Α     | Procedure / Preparation | 15    |
| В     | Circuit / Program       | 20    |
| С     | Execution / Connection  | 15    |
| D     | Result                  | 10    |
| E     | Written Test            | 30    |
| F     | Viva Voce               | 10    |
| TOTAL |                         | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.

### **Syllabus Contents**



| 1020236244 |                   | L | Т | Ρ | С |
|------------|-------------------|---|---|---|---|
| PRACTICUM  | FICESS Automation | 1 | 0 | 4 | 3 |

| Theory Portion                                                                      |        |  |  |  |
|-------------------------------------------------------------------------------------|--------|--|--|--|
| UNIT I: HYDRAULICS AND PNEUMATIC SYSTEMS                                            | 7      |  |  |  |
| Pneumatic systems: Elements-FLR unit-Direction Control Valves-Flow control Valve    | es-ISO |  |  |  |
| Symbols of Pneumatic Components-pneumatic circuits for various industrial applicat  | ions.  |  |  |  |
| Hydraulic Systems: Elements – comparison of Pneumatic systems and Hydra             |        |  |  |  |
| systems-service properties of hydraulic fluids-ISO symbols of hydr                  |        |  |  |  |
| Components-hydraulic circuits for various industrial applications.                  |        |  |  |  |
| Practical Exercises                                                                 |        |  |  |  |
| Pneumatics Lab                                                                      | 15     |  |  |  |
| <b>Exercise 1:</b> Operation of double acting cylinder with quick exhaust valve.    |        |  |  |  |
| Exercise 2: Speed control of a double acting cylinder using metering-in and meterin | ng-out |  |  |  |
| circuits.                                                                           |        |  |  |  |
| Exercise 3: Automatic operation of double acting cylinder in single cycle - using   | limit  |  |  |  |
| switch.                                                                             |        |  |  |  |
| Hydraulics Lab                                                                      | 10     |  |  |  |

Hydraulics Lab

**Exercise 4:** Direct operation of the double acting cylinder.

**Exercise 5:** Speed control of double acting cylinder metering-in and metering-out control.

## **Theory Portion**

## UNIT II: LOGIC GATES AND PLC

PLC

Features of PLC - PLC Block diagram - PLC scan. Fixed and Modular PLC. Ladder logic -

Basic principles of Ladder diagram , Analog I / O and Digital I /O, NO, NC contacts - Coils -AND logic, OR logic.- Applications - Timer - Counter.

## Practical Exercises

PLC Lab

**Exercise 6:** Direct operation of a motor using a latching circuit, AND, OR, logic circuits.

**Exercise 7:** On-Delay control of a motor and Off – Delay control of a motor.



### DIRECTORATE OF TECHNICAL EDUCATION, CHENNAI - 600 025 **REGULATION 2023**

25

8

| 1020236244 |                   | L | Т | Ρ | С |
|------------|-------------------|---|---|---|---|
| PRACTICUM  | FICESS Automation | 1 | 0 | 4 | 3 |

| <b>Exercise 8:</b> Automatic operation of Double acting cylinder-Multi cycle.    |    |  |  |  |
|----------------------------------------------------------------------------------|----|--|--|--|
| <b>Exercise 9:</b> Sequential operation of a double acting cylinder and a motor. |    |  |  |  |
| <b>Exercise 10:</b> Automatic operation of DAC, Forward time delay return.       |    |  |  |  |
| Assessment Test and Revision                                                     |    |  |  |  |
| Total                                                                            | 75 |  |  |  |

#### **END SEMESTER EXAMINATION - Practical Exam**

#### Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

### SCHEME OF EVALUATION

| PART  | DESCRIPTION             | MARKS |
|-------|-------------------------|-------|
| Α     | Procedure / Preparation | 15    |
| В     | Circuit / Program       | 20    |
| С     | Execution / Connection  | 15    |
| D     | Result                  | 10    |
| E     | Written Test            | 30    |
| F     | Viva Voce               | 10    |
| TOTAL |                         | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



| 1020236244 | Dresses Automation | L | Т | Ρ | С |
|------------|--------------------|---|---|---|---|
| PRACTICUM  | Process Automation | 1 | 0 | 4 | 3 |

Equipment / Facilities required to conduct the Practical Course.

Note: The components should be supplied separately. Students should fix the board to execute the circuit.

1. Pneumatic Trainer Board – 2 Nos

(All Cylinders, Control Valves, Limit switches and other accessories should be kept separately and should not be fixed permanently in the board/ stand.)

- Hydraulics Trainer Board 2 No.
   (All Cylinders, Control Valves, Limit switches and other accessories should be kept separately and should not be fixed permanently in the board / stand.)
- 3. PLC 3 Nos.
- 4. Computer with software 10 Nos.



| 1020236245 | PRODUCT DESIGN & DEVELOPMENT | L | Т | Ρ | С |
|------------|------------------------------|---|---|---|---|
| PRACTICUM  |                              | 1 | 0 | 4 | 3 |

#### Introduction:

A product is something sold by an enterprise to its customers. Product design deals with conversion of ideas into reality and, as in other forms of human activity, aims at fulfilling human needs. Product development is the set of activities beginning with the perception of a market opportunity and ending in the production, sale, and delivery of a product.

#### **Course Objectives:**

The objective of the course is

1. To excel in new product design and development through application of knowledge and practical skills.

2. To provide students with a solid foundation in mathematical modeling of engineering problems required for bringing new products fast into the market.

3. To provide students with required scientific and engineering knowledge so as to comprehend, analyze, design and create innovative products and solutions for real life problems.

4. To inculcate professional and ethical values in students and enable them to work in multidisciplinary teams.

5. To provide students an academic environment which can facilitate life-long learning needed for a successful career in new product development.

#### **Course Outcomes:**

On successful completion of this course, student will be able to

CO1: Describe the characteristics used for product design and development.

CO2: Assess the customer requirements in product design.

CO3: Apply structural approach to concept generation, selection and testing.

CO4: Identify various aspects of design such as industrial design, design for manufacture, assembly, service and quality and product architecture.

CO5: Explain various principles and technologies used for the preparation of prototype.



| 1020236245 | PRODUCT DESIGN & DEVELOPMENT | L | Т | Ρ | С |
|------------|------------------------------|---|---|---|---|
| PRACTICUM  |                              | 1 | 0 | 4 | 3 |

### **Pre-requisites:**

Knowledge of basic Science: Design of machine elements, CAD/CAM and Product Life Cycle Management.

## CO/PO Mapping

| CO / PO | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 2   | 2   | 1   | 1   | 1   | 1   | 1   |
| C02     | 2   | 1   | 2   | 1   | 1   | 1   | 1   |
| CO3     | 2   | 2   | 2   | 2   | 1   | 1   | 1   |
| CO4     | 2   | 2   | 1   | 1   | 2   | 1   | 1   |
| C05     | 2   | 2   | 1   | 2   | 1   | 1   | 1   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

### Instructional Strategy:

- 1. Real time product design should be shown through video.
- 2. The subject can Lecture Cum Demonstration basics.
- 3. Practical demonstrations should be organized (industrial Visit).



| 1020236245 | PRODUCT DESIGN & DEVELOPMENT | L | Т | Ρ | С |
|------------|------------------------------|---|---|---|---|
| PRACTICUM  |                              | 1 | 0 | 4 | 3 |

#### **Assessment Methodology:**

|                       | Co                   | End                   |                        |                   |                                       |
|-----------------------|----------------------|-----------------------|------------------------|-------------------|---------------------------------------|
|                       | CA1                  | CA2                   | CA3                    | CA4               | Semester<br>Examination<br>(60 marks) |
| Mode                  | Practical<br>Test    | Practical<br>Test     | Written Test<br>Theory | Practical<br>Test | Practical<br>Examination              |
| Portion               | Cycle I<br>Exercises | Cycle II<br>Exercises | All Portions           | All Exercises     | All Exercises<br>Experiments          |
| Duration              | 2 Periods            | 2 Periods             | 3 Hours                | 3 Hours           | 3 hours                               |
| Exam Marks            | 60                   | 60                    | 100                    | 100               | 100                                   |
| Converted to<br>Marks | 10                   | 10                    | 15                     | 15                | 60                                    |
| Marks                 | Marks 1              |                       | 15                     | 15                | 60                                    |
| Internal Marks        | 40                   |                       |                        |                   |                                       |
| Tentative<br>Schedule | 7th Week             | 14th Week             | 15th Week              | 16th Week         |                                       |

#### Note:

**CA1 and CA2:** All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.



| 1020236245 | PRODUCT DESIGN & DEVELOPMENT |  | Т | Ρ | С |
|------------|------------------------------|--|---|---|---|
| PRACTICUM  |                              |  | 0 | 4 | 3 |

## The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The Procedure, Sketch and Result / Output should be written by the student manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DoTE Official.

| PART | DESCRIPTION                               | MARKS |
|------|-------------------------------------------|-------|
| Α    | Procedure / Preparation                   | 10    |
| В    | Step / Report                             | 20    |
| C    | Presentation                              | 20    |
|      | TOTAL                                     | 50    |
| D    | Practical Documents (As per the portions) | 10    |
|      |                                           | 60    |

#### SCHEME OF EVALUATION

Cycle - I - Exercise 1, 2, 3,4 and 5.

Cycle - II - Exercise 6, 7, 8, 9 and 10.

**CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.

| Description |                                                 | Marks        |           |  |
|-------------|-------------------------------------------------|--------------|-----------|--|
| Part – A    | 30 MCQ Questions.                               | 30 X 1 Mark  | 30 Marks  |  |
| Part – B    | 7 Questions to be answered out of 10 Questions. | 7 X 10 Marks | 70 Marks  |  |
| TOTAL       |                                                 |              | 100 Marks |  |



| 1020236245 | PRODUCT DESIGN & DEVELOPMENT | L | Т | Ρ | С |
|------------|------------------------------|---|---|---|---|
| PRACTICUM  |                              | 1 | 0 | 4 | 3 |

**CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

## SCHEME OF EVALUATION

#### Model Practical Examination and End Semester Examination - Practical Exam

| PART | DESCRIPTION             | MARKS |
|------|-------------------------|-------|
| Α    | Procedure / Preparation | 10    |
| В    | Step / Report           | 20    |
| С    | Presentation            | 20    |
| D    | Result / output         | 10    |
| E    | Written Test            | 30    |
| F    | Viva Voce               | 10    |
|      | TOTAL                   | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.

### **Syllabus Contents**

| Unit I                                                                            | INTRODUCTION                                                                         |    |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----|--|--|
| Theory                                                                            | : Product life cycle, Product policy of an organization, Selection of a              | 3  |  |  |
| profitable product, Product design process, New product strategy Idea generation, |                                                                                      |    |  |  |
| Screening Concept development, Testing Business analysis Product development      |                                                                                      |    |  |  |
| testing                                                                           | testing and Analysis Commercialization Collaboration. Gantt chart product life cycle |    |  |  |
| manag                                                                             | ement.                                                                               |    |  |  |
| Practic                                                                           | al:                                                                                  | 10 |  |  |
| 1.                                                                                | Case studies related to Characteristics of successful product development,           |    |  |  |
|                                                                                   | Design and development of products.                                                  |    |  |  |
| 2.                                                                                | Case studies related to different Development Processes and Organizations.           |    |  |  |



## 1020236245

PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

| Unit II                                                                            | PRODUCT PLANNING                                                          |    |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----|--|
| Theory: Th                                                                         | e product planning process, identify opportunities. Evaluate and          | 3  |  |
| prioritize p                                                                       | rojects, allocate resources and plan timing, complete pre project         |    |  |
| planning, re                                                                       | flect all the results and the process.                                    |    |  |
| Practical:                                                                         |                                                                           |    |  |
| 3. Case studies related to the product planning process, identify opportunities.   |                                                                           |    |  |
| 4. Case                                                                            | e studies related to Concept Generation, Concept Selection, Concept       |    |  |
| Testing.                                                                           |                                                                           |    |  |
| Unit III                                                                           | IDENTIFYING CUSTOMER NEEDS                                                |    |  |
| Theory: Gat                                                                        | her raw data from customers, interpret raw data in terms of customer      | 3  |  |
| needs, orga                                                                        | nize the needs into a hierarchy, establish the relative importance of the |    |  |
| needs and reflect on the results and the process. Product Specifications: What are |                                                                           |    |  |
| specifications, when are specifications established, establishing target           |                                                                           |    |  |
| specifications, setting the final specifications.                                  |                                                                           |    |  |
|                                                                                    |                                                                           |    |  |
| Practical:                                                                         |                                                                           | 10 |  |
| 5. Case                                                                            | e studies related to Identifying Customer Needs.                          |    |  |
| 6. Case                                                                            | e studies related to Customer Product Specification.                      |    |  |
| Unit IV                                                                            | CONCEPT GENERATION                                                        |    |  |
| Theory: Pro                                                                        | oduct implications of the architecture, establishing the architecture,    | 3  |  |
| variety and                                                                        | supply chain considerations. Industrial design: Assessing the need for    |    |  |
| industrial c                                                                       | lesign, the impact of industrial design, industrial design process,       |    |  |
| managing tl                                                                        | ne industrial design process, assessing the quality of industrial design. |    |  |
| Design for manufacturing: Definition, estimation of manufacturing cost, reducing   |                                                                           |    |  |
| the cost of                                                                        | components, assembly, supporting production, impact of DFM on other       |    |  |
| factors, serv                                                                      | vice and quality.                                                         |    |  |
| Practical:                                                                         |                                                                           | 10 |  |
| 7. Case                                                                            | e studies related to Product Architecture.                                |    |  |



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

| 8 Cases        | studies related to Design for Manufacturing                              |    |
|----------------|--------------------------------------------------------------------------|----|
| 0: 0000 0      | studies related to beolgh for manaraotaning.                             |    |
| Unit V F       | PROTOTYPING                                                              |    |
| Theory: Proto  | otyping basics, principles of prototyping, technologies, planning for    | 3  |
| prototypes. Pi | roduct development economics, Elements of economic analysis, base        |    |
| case financia  | I mode, sensitive analysis, project trade-offs, influence of qualitative |    |
| factors on pro | oject success, qualitative analysis.                                     |    |
| Practical:     |                                                                          | 10 |
| 9. Case        | studies related to Prototyping, Product Development Economics.           |    |
| 10. Field      | Visit Report manufacturing or assembling industry.(Automobile            |    |
| Indust         | ry – Minimum – 4 Hrs) – Report should include: various steps             |    |
| involve        | ed in product manufacturing or product assemble(not included in          |    |
| Practio        | cal Exam)                                                                |    |
|                | Assessment + Revision                                                    | 10 |
|                | TOTAL                                                                    | 75 |

### Suggested List of Students Activity:

Other than the classroom learning, the following are the suggested student related co- curricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course.

- 1. Online video demonstration.
- 2. Practical demonstration.
- 3. Automobile industry visit and prepare a report.

Involve students in trouble shooting activities either in group or individual.

### Text and Reference Books:

1. Karl T Ulrich, Steven D Eppinger , " Product Design & Development." Tata McGrawhill New Delhi 2003

- 2. Hollins B & Pugh S "Successful Product Design." Butter worths London.
- 3. Bralla J G "Handbook of Product Design for Manufacture, McGrawhill NewYork.



| 1020236245 | PRODUCT DESIGN & DEVELOPMENT | L | Т | Ρ | С |
|------------|------------------------------|---|---|---|---|
| PRACTICUM  |                              | 1 | 0 | 4 | 3 |

4. A K Chitale and R C Gupta, Product Design and Manufacturing, 6th Edition, PHI, New Delhi, 2003.

5. Boothroyd G, Dewhurst P and Knight W, Product Design for Manufacture and Assembly, 2nd Edition, Marcel Dekker, New York, 2002.

### Web-based/Online Resources:

https://archive.nptel.ac.in/courses/112/107/112107217/

### **End Semester Examination - Practical Exam**

#### Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

| PART | DESCRIPTION             | MARKS |
|------|-------------------------|-------|
| Α    | Procedure / Preparation | 10    |
| В    | Step / Report           | 20    |
| С    | Presentation            | 20    |
| D    | Result / output         | 10    |
| E    | Written Test            | 30    |
| F    | Viva Voce               | 10    |
|      | TOTAL                   | 100   |

### SCHEME OF EVALUATION

Note: For the written test 30 MCQ shall be asked from the theory portions.



| 1020236246 | Electric Vehicle Technology | L | Т | Ρ | С |
|------------|-----------------------------|---|---|---|---|
| PRACTICUM  | Electric Venicle Technology | 1 | 0 | 4 | 3 |

#### Introduction:

The world is transitioning to cleaner mobility options with the aim at improving air quality and reducing dependency on fossil fuels. Electric Vehicles (EVs) have emerged as a popular clean mobility choice to reduce emissions. EVs are powered fully or partially by batteries, they can help to reduce dependence on fossil fuels and also air quality.

#### **Course Objectives:**

The objective of this course is to enable the students to

- Learn and practice the charging systems of Electric Vehicles.
- Understand the concept of Electric Vehicle components.
- Study the configurations of Electric Vehicles and assemble.

#### **Course Outcomes**

On successful completion of this course, the student will be able to

CO1: Describe the electric vehicle and sub systems.

CO2: Demonstrate and test the EV battery and charging system.

CO3: Apply the procedures and testing of electric components and their accessories.

CO4: Test, diagnose and service the given electric two-wheeler.

CO5: Construct and test the electric Three-wheeler.

#### **Pre-requisites:**

Nil



| 1020236246 | Electric Vehicle Technology | L | Т | Ρ | С |
|------------|-----------------------------|---|---|---|---|
| PRACTICUM  | Lieune venicie reciniology  | 1 | 0 | 4 | 3 |

CO/PO Mapping

| CO / PO | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 1   | -   | -   | -   | 1   | -   | -   |
| C02     | 2   | 1   | -   | 2   | -   | -   | 1   |
| C03     | 1   | 1   | 1   | 2   | -   | -   | 1   |
| C04     | 1   | 1   | 1   | 2   | -   | -   | 1   |
| C05     | 1   | 1   | 1   | 1   | -   | -   | 1   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

### Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyze potential sources of error in case of discrepancies.
- The industry session shall be addressed by industry experts (in contact mode/online / recorded video mode) in the discipline only.



#### Assessment Methodology:

|                | Co        | ontinuous Asses | sment (40 mark | (s)           | End           |
|----------------|-----------|-----------------|----------------|---------------|---------------|
|                |           |                 |                |               | Semester      |
|                | CA1       | CA2             | CA3            | CA4           | Examination   |
|                |           |                 |                |               | (60 marks)    |
| Mada           | Practical | Practical       | Written Test   | Practical     | Practical     |
| WOUE           | Test      | Test            | Theory         | Test          | Examination   |
| Portion        | Cycle I   | Cycle II        | All Portions   |               | All Exercises |
| Fortion        | Exercises | Exercises       | AILLOLIOUS     | All LACICISCS | Experiments   |
| Duration       | 2 Periods | 2 Periods       | 3 Hours        | 3 Hours       | 3 hours       |
| Exam Marks     | 60        | 60              | 100            | 100           | 100           |
| Converted to   | 10        | 10              | 15             | 15            | 60            |
| Marks          | 10        | 10              | 15             | 15            | 00            |
| Marks          | 1         | 0               | 15             | 15            | 60            |
| Internal Marks |           |                 |                |               |               |
| Tentative      | 7th Week  | 1/Ith Week      | 15th Week      | 16th Week     |               |
| Schedule       | 7 UT WEEK |                 |                |               |               |

Note:

**CA1 and CA2:** All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.



| 1020236246 | Electric Vohiele Technology | L | Т | Ρ | С |
|------------|-----------------------------|---|---|---|---|
| PRACTICUM  |                             | 1 | 0 | 4 | 3 |

## The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The Procedure, Sketch and Result / Output should be written by the student manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DoTE Official.

| PART | DESCRIPTION                               | MARKS |
|------|-------------------------------------------|-------|
| Α    | Procedure / Explanation                   | 10    |
| В    | Observation/ Assembly/ Reading            | 20    |
| С    | Test Report                               | 20    |
|      | TOTAL                                     | 50    |
| D    | Practical Documents (As per the portions) | 10    |
|      |                                           | 60    |

## SCHEME OF EVALUATION

Cycle - I - Exercise 1, 2, 3,4 and 5.

Cycle - II - Exercise 6, 7, 8, 9 and 10.

**CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



| 1020236246 | Electric Vehicle Technology | L | Т | Ρ | С |
|------------|-----------------------------|---|---|---|---|
| PRACTICUM  | Electric venicle rechnology | 1 | 0 | 4 | 3 |

| <b>Question pat</b> | ttern – Written | Test Theory |
|---------------------|-----------------|-------------|
|---------------------|-----------------|-------------|

| Description |                                                 | Marks        |           |  |
|-------------|-------------------------------------------------|--------------|-----------|--|
| Part – A    | 30 MCQ Questions.                               | 30 X 1 Mark  | 30 Marks  |  |
| Part – B    | 7 Questions to be answered out of 10 Questions. | 7 X 10 Marks | 70 Marks  |  |
| TOTAL       |                                                 |              | 100 Marks |  |

**CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

### SCHEME OF EVALUATION

Model Practical Examination and End Semester Examination - Practical Exam

| PART | DESCRIPTION                    | MARKS |
|------|--------------------------------|-------|
| Α    | Aim & Apparatus Required       | 10    |
| В    | Procedure / Explanation        | 10    |
| С    | Observation/ Assembly/ Reading | 20    |
| D    | Test Report                    | 20    |
| E    | Written Test (Theory Portions) | 30    |
| F    | Viva Voce                      | 10    |
|      | TOTAL                          | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



## Syllabus Contents

| Theory Portion - Electric Vehicle and accessories                                      |    |
|----------------------------------------------------------------------------------------|----|
| Environmental impact of conventional vehicle - Air pollution -History of Electric      | 15 |
| vehicles – Need for Electric Vehicle. Battery Electric Vehicle (BEV) –Block diagram    |    |
| of BEV - Major Components of Electric Vehicle – Working of BEV.                        |    |
| Battery: Construction and working of Lead Acid and Lithium Based Batteries             |    |
| –Battery Management System.                                                            |    |
| Battery Charging Techniques: Battery Charging techniques – Constant current and        |    |
| Constant voltage, Trickle charging – Battery Swapping Techniques.                      |    |
| Types of EV motors - Permanent Magnetic BrushLess DC Motor Drives (BLDC) -             |    |
| Principles, Construction and Working – Hub motor Drive system – Merits and             |    |
| Demerits of DC motor drive, BLDC motor drive.                                          |    |
| Power Converters: Role of Power Converters – Block diagram of Power Converters         |    |
| in EV – Types of Power Converters – DC to DC Converter, Inverter and Rectifier.        |    |
| Electronics Power Steering - Torque Sensor - EPS Motor - Regenerative                  |    |
| Suspension System – Regenerative Braking system.                                       |    |
| Tamil Nadu EV Policy 2019 & 2023.                                                      |    |
| Practical Exercises                                                                    |    |
| Experiment 1: Battery Testing – Specific Gravity Test, Open volt testing, Cell voltage | 5  |
| tester.                                                                                |    |
| Experiment 2: Test the Lead acid Battery using voltage Load tester and test the        | 5  |
| battery pack supply to glow the Head lamp.                                             |    |
| Experiment 3: Test the battery charging (Series and Parallel) and note the various     | 5  |
| charging parameters.                                                                   |    |
| Experiment 4: Identify and test EV components. (Controller, Throttle, EV motor,        | 5  |
| Power ON Key, brake, indicator, horn and headlight)                                    |    |
| <b>Experiment 5:</b> Construct and testing of BLDC Motor with throttle control.        | 5  |
| Experiment 6: Test the Inverter circuit and buck converter circuit.                    | 5  |



| 1020236246 | Flootnic Vichiele Technology | L | Т | Ρ | С |
|------------|------------------------------|---|---|---|---|
| PRACTICUM  | Electric Venicle Technology  | 1 | 0 | 4 | 3 |

| <b>Experiment 7:</b> Assemble and test E-bicycle with wiring harness.                  | 5  |
|----------------------------------------------------------------------------------------|----|
| Experiment 8: Assemble and test E-Bike with a central drive mechanism (Chain           | 5  |
| drive) with wiring harness.                                                            |    |
| Experiment 9: Assemble and test E-Auto rickshaw with differential and wiring           | 5  |
| harness.                                                                               |    |
| <b>Experiment 10:</b> Plan maintenance and servicing schedule of electric two-wheeler. | 5  |
| Assessment Test and Revision                                                           | 10 |
| Total                                                                                  | 75 |

#### Suggested List of Students Activity:

• Presentation/Seminars by students on any recent technological developments based on the course.

#### **Text and Reference Books:**

- 1. A.K Babu, Electric & Hybrid Vehicle, Khanna Publication, New Delhi 2018 Edition
- Iqbal Husian, Electric and Hybrid Vehicle Design Fundamentals, CRC Press, Boca Raton, Florida
- Comparison of Electric and Conventional Vehicles in Indian Market: Total Cost of Ownership, Consumer Preference and Best Segment for Electric Vehicle (IJSR), Akshat Bansal, Akriti Agarwal
- 4. Tamil Nadu Electric Vehicles Policy 2019 & 2023.
- 5. Design and analysis of aluminum/air battery system for electric vehicles, Shaohua Yang, Harold Knickle, Elsevier.
- 6. Propelling Electric Vehicles in India, Technical study of Electric Vehicles and Charging Infrastructure



#### Web-based/Online Resources:

- 1. NPTEL Fundamentals of Electric vehicles: Technology & Economics https://nptel.ac.in/courses/108106170
- NPTEL Introduction to Hybrid and Electric Vehicles, IIT Guwahati https://nptel.ac.in/courses/108103009

#### **END SEMESTER EXAMINATION - Practical Exam**

#### Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

#### SCHEME OF EVALUATION

| PART | DESCRIPTION                    | MARKS |
|------|--------------------------------|-------|
| Α    | Aim & Apparatus Required       | 10    |
| В    | Procedure / Explanation        | 10    |
| С    | Observation/ Assembly/ Reading | 20    |
| D    | Report                         | 20    |
| E    | Written Test (Theory Portions) | 30    |
| F    | Viva Voce                      | 10    |
|      | TOTAL                          | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



## Equipment / Facilities required to conduct the Practical Course.

| SI. No. | Machines / Tools / Equipments                                                                                                                                                                                | Quantity |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1.      | Lead acid battery / Lithium-ion battery                                                                                                                                                                      | 8 Nos.   |
| 2.      | Battery Load tester                                                                                                                                                                                          | 1 No.    |
| 3.      | Specific gravity tester- Hydrometer                                                                                                                                                                          | 2 Nos.   |
| 4.      | Cell voltage tester (High Discharge Tester)                                                                                                                                                                  | 1 No.    |
| 5.      | Buck Converter                                                                                                                                                                                               | 2 Nos.   |
| 6.      | Battery Charger                                                                                                                                                                                              | 1 No.    |
| 7.      | Inverter Trainer Kit                                                                                                                                                                                         | 1 No     |
| 8.      | BLDC motor control Trainer kit or accessories                                                                                                                                                                | 1 No     |
| 9.      | Two-wheeler Wiring Harness board or kit                                                                                                                                                                      | 1 No     |
| 10.     | E – Bicycle kit or Accessories                                                                                                                                                                               | 1 No     |
|         | 1. 24V DC Controller, 24 V DC motor                                                                                                                                                                          |          |
|         | 2. Throttle, Brake, Power ON key                                                                                                                                                                             |          |
|         | 3. Head lamp with Horn                                                                                                                                                                                       |          |
| 11.     | E – Bike kit or Accessories                                                                                                                                                                                  | 1 No     |
|         | <ol> <li>48 V BLDC Controller, 500W or 750 W, 48 V<br/>BLDC motor, Throttle, Brake, Power ON key,<br/>Display Board, Head lamp with Horn, Left &amp;<br/>Right Indicator</li> </ol>                          |          |
| 12.     | E-Auto Rickshaw<br>500 W or 750 W, 48 V BLDC motor with differential<br>arrangement<br>1. Throttle<br>2. Brake<br>3. Power ON key<br>4. Display Board<br>5. Head lamp with Horn<br>6. Left & Right Indicator | 1 No     |



| 1020236246 | Flootnie Vichiele Technology | L | Т | Ρ | С |
|------------|------------------------------|---|---|---|---|
| PRACTICUM  | Lieune venicle reciniology   | 1 | 0 | 4 | 3 |

| 13. | Consumable: -                                         | As per requirement |
|-----|-------------------------------------------------------|--------------------|
|     | • Battery Cell - 1.5 V or 3.65 V                      |                    |
|     | Soldering Iron                                        |                    |
|     | • Flux                                                |                    |
|     | De-solder gun or Solder wick                          |                    |
|     | • Lead                                                |                    |
|     | Tools                                                 |                    |
|     | Continuity Tester                                     |                    |
|     | Line Tester                                           |                    |
|     | Multi-meter                                           |                    |
|     | <ul> <li>Screw Drive set &amp; Spanner set</li> </ul> |                    |
|     |                                                       |                    |



| 1020236247 | REVERSE ENGINEERING | L | Т | Р | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 1 | 0 | 4 | 3 |

#### Introduction:

Reverse Engineering (RE) has become an important Engineering task to obtain knowledge about engineering devices or systems. RE is an effective learning technique if other "solutions" are available on the market.

#### **Course Objectives:**

After the completion of the course, students should be able to:

- Understand basic engineering systems.
- Understand the terminologies related to re-engineering, forward engineering, and reverse engineering.
- Disassemble products and specify the interactions between its subsystems and their functionality
- Understand Reverse Engineering methodologies.
- Understand Reverse engineering of Systems, Mechanical RE.

#### **Course Outcomes**

### On successful completion of this course, student will be able to

CO1: Explain the fundamental concepts and principles of reverse engineering in product design and development.

CO2: Describe the principles of material characteristics, part durability and life limitation in reverse engineering

CO3: Apply the principles of material identification and process verification in product design and development.

CO4: Explain the principles of rapid prototyping

CO5: Analyze the various legal aspect and applications of reverse engineering in product design and development



| 1020236247 | REVERSE ENGINEERING | L | Т | Р | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 1 | 0 | 4 | 3 |

#### Pre-requisites:

Material Science, Machine Design, Machine Drawing and Value Engineering.

#### CO/PO Mapping

| CO / PO | P01 | P02 | P03 | PO4 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | 2   |     | 1   |     |     |     |
| C02     | 3   | 2   |     | 1   |     |     |     |
| C03     | 3   | 2   |     | 1   |     |     |     |
| C04     | 3   | 2   |     | 1   |     |     |     |
| C05     | 3   | 2   |     | 1   |     |     |     |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

### Instructional Strategy:

- Engage and Motivate: Instructors should actively engage students to boost their learning confidence.
- Real-World Relevance: Incorporate relatable, real-life examples and engineering applications to help students understand and appreciate course concepts.
- Interactive Learning: Utilize demonstrations and plan interactive student activities for an engaging learning experience.
- Application-Based Learning: Employ a theory-demonstrate-practice-activity strategy throughout the course to ensure outcome-driven learning and employability.
- Simulation and Real-World Practice: Conduct demonstrations and hands-on activities in a simulated environment, transitioning to real-world scenarios when possible.
- Encourage Critical Analysis: Foster an environment where students can honestly assess experiment outcomes and analyse potential sources of error in case of discrepancies



| L | Т | Р | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

## PRACTICUM

#### Assessment Methodology:

|                       | Co        | ontinuous Asses | sment (40 mark             | (s)           | End                     |
|-----------------------|-----------|-----------------|----------------------------|---------------|-------------------------|
|                       | CA1       | CA2             | CA2                        | CA4           | Semester<br>Examination |
|                       |           | UAZ             | CAS                        | CA4           | (60 marks)              |
| Modo                  | Practical | Practical       | Written Test               | Practical     | Practical               |
| wode                  | Test      | Test            | Theory                     | Test          | Examination             |
| Portion               | Cycle I   | Cycle II        | All Portions All Exercises |               | All Exercises           |
| Portion               | Exercises | Exercises       | All Foltions               | All LACICISES | Experiments             |
| Duration              | 2 Periods | 2 Periods       | 3 Hours                    | 3 Hours       | 3 hours                 |
| Exam Marks            | 60        | 60              | 100                        | 100           | 100                     |
| Converted to          | 10        | 10              | 15                         | 15            | 60                      |
| Marks                 | 10        | 10              | 15                         | 15            | 00                      |
| Marks                 | 1         | 0               | 15                         | 15            | 60                      |
| Tentative<br>Schedule | 7th Week  | 14th Week       | 15th Week                  | 16th Week     |                         |

Note:

**CA1 and CA2:** All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.



| 1020236247 | REVERSE ENGINEERING | L | Т | Р | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 1 | 0 | 4 | 3 |

### The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The Procedure, Sketch and Result / Output should be written by the student manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DoTE Official.

| PART | DESCRIPTION                               | MARKS |
|------|-------------------------------------------|-------|
| Α    | Aim & Apparatus Required                  | 10    |
| В    | Procedure / Explanation                   | 20    |
| С    | Presentation                              | 20    |
|      | TOTAL                                     | 50    |
| D    | Practical Documents (As per the portions) | 10    |
|      |                                           | 60    |

## SCHEME OF EVALUATION

Cycle - I - Exercise 1, 2, 3,4 and 5.

Cycle - II - Exercise 6, 7, 8 and 9.

**CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

#### **Question pattern – Written Test Theory**

| Description |                                                 | Marks        |           |
|-------------|-------------------------------------------------|--------------|-----------|
| Part – A    | 30 MCQ Questions.                               | 30 X 1 Mark  | 30 Marks  |
| Part – B    | 7 Questions to be answered out of 10 Questions. | 7 X 10 Marks | 70 Marks  |
| TOTAL       |                                                 | •            | 100 Marks |

**CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.

#### SCHEME OF EVALUATION

Model Practical Examination and End Semester Examination - Practical Exam

| PART | DESCRIPTION              | MARKS |
|------|--------------------------|-------|
| Α    | Aim & Apparatus Required | 10    |
| В    | Procedure / Explanation  | 20    |
| С    | Presentation             | 20    |
| D    | Result                   | 10    |
| E    | Written Test             | 30    |
| F    | Viva Voce                | 10    |
|      | TOTAL                    | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



| 1020236247 | REVERSE ENGINEERING | L | Т | Р | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 1 | 0 | 4 | 3 |

# Syllabus Contents

| Unit I                                                                         | Introduction                                                                  |    |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----|
| Theory:                                                                        | Definition – Uses – the Generic Process – Phases – Computer Aided Reverse     | 3  |
| Engineer                                                                       | ing - Surface and Solid Model Reconstruction – Dimensional Measurement –      |    |
| Prototypi                                                                      | ng.                                                                           |    |
| Practical                                                                      | :                                                                             | 6  |
| 1. Prepare case study report – various type of rapid Proto type also write the |                                                                               |    |
| te                                                                             | echnical difference.                                                          |    |
| UNIT II                                                                        | MATERIAL IDENTIFICATION AND PROCESS VERIFICATION                              |    |
| Theory:                                                                        | Material Specification, Composition Determination, Microstructure Analysis,   | 3  |
| Manufac                                                                        | turing Process Verification.                                                  |    |
| Practica                                                                       | :                                                                             | 12 |
| 2. N                                                                           | laterial Strength Testing: Compare the strength properties of different       |    |
| materials commonly used in automobile components, such as steel, aluminum,     |                                                                               |    |
| a                                                                              | nd composite materials. Perform tensile, compressive, and bending tests to    |    |
| d                                                                              | etermine their suitability for various vehicle types.                         |    |
| <b>3.</b> Ir                                                                   | npact Resistance Analysis: Test the impact resistance of different Automobile |    |
| b                                                                              | ody materials by subjecting them to controlled impacts. Measure and           |    |
| C                                                                              | ompare the deformation and damage caused by impacts of varying intensity.     |    |
| Unit III                                                                       | MATERIAL CHARACTERISTICS, PART DURABILITY AND                                 |    |
|                                                                                | LIFE LIMITATION                                                               |    |
| Theory:                                                                        |                                                                               | 3  |
| Alloy Sti                                                                      | ructure Equivalency – Phase Formation and Identification – Mechanical         |    |
| Strength                                                                       | - Hardness -Part Failure Analysis - Fatigue - Creep and Stress Rupture -      |    |
| Environm                                                                       | nentally Induced Failure                                                      |    |



| 1020236247 | REVERSE ENGINEERING | L | Т | Ρ | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 1 | 0 | 4 | 3 |

| Practical:                                                                                  | 5  |
|---------------------------------------------------------------------------------------------|----|
| <b>4.</b> Structural Rigidity Testing: Conduct bending and torsion tests on Automobile body |    |
| frames to determine their structural rigidity. Compare different frame designs and          |    |
| materials to identify the most robust and lightweight options.                              |    |
| Unit IV RAPID PROTOTYPING(RP)                                                               |    |
| <b>Theory:</b> Introduction, current RP techniques and materials. Stereo Lithography.       | 3  |
| Selective Laser Sintering, Fused Deposition Modeling, Three-dimensional Printing,           | C  |
| Laminated Object Manufacturing, Multijet Modeling.                                          |    |
| Practical:                                                                                  | 12 |
| 5. Crash Testing Simulation: Utilize crash test dummies and acceleration sensors            |    |
| to simulate vehicle collisions. Study how different body designs and materials              |    |
| affect passenger safety and structural integrity during impact.                             |    |
| 6. Prepare case study report - Rapid Prototyping – Any one mechanical Machine               |    |
| components (Impeller, Engine Block, Piston and Door Pad)                                    |    |
| Unit V INDUSTRIAL APPLICATIONS                                                              |    |
| Theory: Reverse Engineering in the Automotive Industry; Aerospace Industry. Case            | 3  |
| studies and Solving Industrial projects in Reverse Engineering.                             |    |
| Legality: Patent – Copyrights – Trade Secret – Third-Party Materials.                       |    |
| Practical:                                                                                  | 15 |
| 7. Prepare case study report – Patent                                                       |    |
| 8. Prepare case study report – Copy rights                                                  |    |
| 9. Prepare case study report – Trade Mark                                                   |    |
| Assessment + Revision                                                                       | 10 |
| TOTAL                                                                                       | 75 |

## Text and Reference Books:

1. Reverse Engineering: An Industrial Perspective by V. Raja and K. Fernandes, Springer-Verlag.Wego


| 1020236247 | REVERSE ENGINEERING | L | Т | Р | С |
|------------|---------------------|---|---|---|---|
| PRACTICUM  |                     | 1 | 0 | 4 | 3 |

2. Kevin Otto , "Product Design : Techniques in Reverse Engineering and New Product Development", ISBN-13: 9788177588217, Dorling Kindersley

3. Robert Messler, "Reverse Engineering: Mechanisms, Structures, Systems & Materials", McGraw Hill Education, ISBN: 9780071825160

4. Reverse Engineering by K. A. Ingle, McGraw-Hill.

5. Raja, Vinesh, Fernandes, Kiran J., "Reverse Engineering An Industrial Perspective" ISBN 978-1-84628-856-2, Springer

### END SEMESTER EXAMINATION - Practical Exam

#### Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

| PART | DESCRIPTION              | MARKS |
|------|--------------------------|-------|
| Α    | Aim & Apparatus Required | 10    |
| В    | Procedure / Explanation  | 20    |
| С    | Presentation             | 20    |
| D    | Result                   | 10    |
| E    | Written Test             | 30    |
| F    | Viva Voce                | 10    |
|      | TOTAL                    | 100   |

### SCHEME OF EVALUATION

Note: For the written test 30 MCQ shall be asked from the theory portions.



| PRACTICUM 1 0 4 3 | 1020236248 | Green Eneray & Engineering | L | Т | Р | С |
|-------------------|------------|----------------------------|---|---|---|---|
|                   | PRACTICUM  |                            | 1 | 0 | 4 | 3 |

#### Introduction:

Traditional energy sources such as coal, oil, and natural gas contribute significantly to greenhouse gas emissions, air pollution, and environmental degradation. By transitioning to green energy sources such as solar, wind, hydroelectric, and biomass, engineers can mitigate these harmful effects while meeting the growing global demand for energy. The green energy projects often have lower life cycle carbon footprints compared to conventional energy sources, making them essential for achieving climate targets and promoting sustainable development. In essence, incorporating green energy into engineering practices is not only necessary for addressing environmental concerns but also essential for creating a resilient, equitable, and prosperous future for all.

#### **Course Objectives:**

The objective of this course is to prepare the student,

- To impart knowledge on solar energy collection and to demonstrate practical applications and benefits of solar panels and energy storage systems.
- To understand the principles of wind energy and biomass energy.
- To impart knowledge about geothermal heat pumps, ocean thermal energy conversion (OTEC), and their feasibility.
- To provide fundamental principles of energy-efficient appliances, building designs, and smart systems.
- To acquire knowledge regarding sustainable manufacturing process and to explore on eco-friendly production processes, materials, and waste reduction strategies.

#### **Course Outcomes**

On successful completion of this course, student will be able to

On successful completion of this course, the students will be able to,

- CO1 Acquire the knowledge of the principles of solar energy conversion and their benefits.
- CO2 Enable for building a small range of wind energy conversion system.

CO3 - Gain knowledge on the various classification of energy sources and their environmental issues.



| 1020236248 | Green Energy & Engineering | L | Т | Р | С |
|------------|----------------------------|---|---|---|---|
| PRACTICUM  |                            | 1 | 0 | 4 | 3 |

CO4 - Analyze the limitless availability of green energy sources and understand the challenges in renewable hybrid system.

CO5 - learn hydrogen production method, storage methods and waste reduction strategies.

## Pre-requisites:

Knowledge of basic energy sources.

### **CO/PO Mapping**

| C0 / P0 | P01 | P02 | P03 | P04 | P05 | P06 | P07 |
|---------|-----|-----|-----|-----|-----|-----|-----|
| C01     | 3   | 3   | 2   | 1   | 1   | -   | 1   |
| C02     | 3   | 3   | 2   | 2   | 1   | -   | 1   |
| C03     | 3   | 2   | 2   | 1   | 1   | -   | 1   |
| C04     | 3   | 1   | -   | 1   | 1   | 1   | 1   |
| C05     | 3   | 1   | -   | 1   | 1   | 1   | 2   |

Legend: 3-High Correlation, 2-Medium Correlation, 1-Low Correlation

### Instructional Strategy:

- It is advised that teachers take steps to pique pupils' attention and boost their curiosity to learn.
- Implement task-based learning activities where students work on specific tasks or projects.
- Incorporate technology tools and resources, such as online platforms, interactive multimedia and virtual communication tools, to enhance engagement and provide additional practice opportunities.
- Incorporate formative and summative assessments to gauge student progress and provide targeted feedback.



- Throughout the course, a theory-demonstrate-practice-activity strategy may be used to ensure that learning is outcome and employability based.
- All demonstrations/Hand-on practices may be followed in the real environment as far as possible.

# Assessment Methodology:

|                | Co        | ontinuous Asses | sment (40 mark | (s)           | End           |
|----------------|-----------|-----------------|----------------|---------------|---------------|
|                |           |                 |                |               | Semester      |
|                | CA1       | CA2             | CA3            | CA4           | Examination   |
|                |           |                 |                |               | (60 marks)    |
| Mode           | Practical | Practical       | Written Test   | Practical     | Practical     |
| Wode           | Test      | Test            | Theory         | Test          | Examination   |
| Portion        | Cycle I   | Cycle II        | All Portions   |               | All Exercises |
| Fortion        | Exercises | Exercises       |                | All LACICISCS | Experiments   |
| Duration       | 2 Periods | 2 Periods       | 3 Hours        | 3 Hours       | 3 hours       |
| Exam Marks     | 60        | 60              | 100            | 100           | 100           |
| Converted to   | 10        | 10              | 15             | 15            | 60            |
| Marks          | 10        | 10              | 15             | 15            | 00            |
| Marks          | 1         | 0               | 15             | 15            | 60            |
| Internal Marks | 40        |                 |                |               |               |
| Tentative      | 7th Week  | 14th Week       | 15th Week      | 16th Week     |               |
| Schedule       |           |                 |                |               |               |

Note:

**CA1 and CA2:** All the exercises/experiments should be completed as per the portions above and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation as below. The



| 1020236248 | Green Energy & Engineering | L | Т | Р | С |
|------------|----------------------------|---|---|---|---|
| PRACTICUM  |                            | 1 | 0 | 4 | 3 |

marks awarded shall be converted to 10 Marks for each assessment test. Best of one will be considered for the internal assessment of 10 Marks.

Practical documents should be maintained for every experiment immediately after completion of the practice. The practical document should be submitted for the practical test. The same should be evaluated for 10 Marks for each exercise/experiment. The total marks awarded should be converted to 10 Marks for the practical test as per the scheme of evaluation as below.

## The details of the documents to be prepared as per the instruction below.

Each exercise should be completed on the day of practice. The same shall be evaluated for 10 marks on the day or next day of practice before commencement of the next experiment.

This documentation can be carried out in a separate notebook or a printed manual or a file with documents. The Procedure, Sketch and Result / Output should be written by the student manually in the documents.

The detailed date of the practices and its evaluations should be maintained in the course logbook. The log book and the practical documents should be submitted for the verification by the Flying Squad and DoTE Official.

| PART | DESCRIPTION                               | MARKS |
|------|-------------------------------------------|-------|
| A    | Aim / Procedure                           | 10    |
| В    | Block diagram / Explanation               | 20    |
| С    | Presentation / Report                     | 20    |
|      | TOTAL                                     | 50    |
| D    | Practical Documents (As per the portions) | 10    |
|      |                                           | 60    |

# SCHEME OF EVALUATION



| 1020236248 | Green Energy & Engineering | L | Т | Р | С |
|------------|----------------------------|---|---|---|---|
| PRACTICUM  |                            | 1 | 0 | 4 | 3 |

Cycle - I - Exercise 1, 2, 3,4 and 5.

Cycle - II - Exercise 6, 7, 8, 9 and 10.

**CA 3:** Written Test for complete theory portions should be conducted for 100 Marks as per the question pattern below. The marks scored will be converted to 15 Marks for internal assessment.

| Description |                                                 | Marks        |          |  |
|-------------|-------------------------------------------------|--------------|----------|--|
| Part – A    | 30 MCQ Questions.                               | 30 X 1 Mark  | 30 Marks |  |
| Part – B    | 7 Questions to be answered out of 10 Questions. | 7 X 10 Marks | 70 Marks |  |
| TOTAL       | 100 Marks                                       |              |          |  |

## **Question pattern – Written Test Theory**

**CA 4:** All the exercises/experiments should be completed and kept for the practical test. The students shall be permitted to select any one by lot for the test. The practical test should be conducted as per the scheme of evaluation below. After completion of all the exercises the practical test should be conducted as per End Semester Examination question pattern scheme of evaluation. The marks awarded should be converted to 15 Marks for the internal assessment.



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

#### SCHEME OF EVALUATION

Model Practical Examination and End Semester Examination - Practical Exam

| PART | DESCRIPTION                    | MARKS |
|------|--------------------------------|-------|
| Α    | Aim / Procedure                | 10    |
| В    | Block diagram / Explanation    | 20    |
| С    | Presentation / Report          | 20    |
| D    | Result / Output                | 10    |
| E    | Written Test (Theory Portions) | 30    |
| F    | Viva Voce                      | 10    |
|      | TOTAL                          | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.

## Syllabus Contents

| UNIT I     | SOLAR ENERGY & WIND ENERGY                                                    |   |
|------------|-------------------------------------------------------------------------------|---|
| INTRODU    | CTION                                                                         | 7 |
| Overview   | of conventional & renewable energy sources, types of renewable energy         |   |
| systems,   | Future of Energy Use, Present Indian and international energy scenario of     |   |
| conventio  | nal and RE sources, Energy for sustainable development, Environmental         |   |
| Aspects o  | of Energy, Limitations of RE sources.                                         |   |
| SOLAR EN   | NERGY & WIND ENERGY                                                           |   |
| Theory of  | f solar cells - Concept of Solar PV systems - Flat plate and concentrating    |   |
| collectors | , Solar PV Applications - solar heating/cooling technique, solar distillation |   |
| and solar  | drying, solar cookers. Energy from Wind - Horizontal axis Wind Turbine -      |   |



PRACTICUM

| L | Т | Р | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

| Vertical Axis Wind Turbine - Wind Energy Conversion Systems        |   |
|--------------------------------------------------------------------|---|
| Familiarization with Different Solar Energy Gadgets                |   |
| Exercise 1: Study of Solar Distillation System                     | 5 |
| Exercise 2: Performance test on Solar Cooker                       | 5 |
| <b>Exercise 3:</b> Performance analysis of Solar Water Heater      | 5 |
| Exercise 4: Performance test on Solar Dryer                        | 5 |
| <b>Exercise 5:</b> Performance Evaluation on Solar Lighting System | 5 |

| UNIT II    | GEOTHERMAL                           | ENERGY,        | BIOMASS,         | HYDROGEN         |     |
|------------|--------------------------------------|----------------|------------------|------------------|-----|
|            | STORAGE, ENERGY EFFICIENT S          | SYSTEMS & G    | REEN MANUFA      | CTURING SYST     | EMS |
| OCEAN EN   | NERGY, BIO-MASS ENERGY & HYD         | ROGEN PRO      | DUCTION          |                  | 8   |
| OTEC, Pri  | nciples of utilization, setting of   | OTEC plant     | s - Tidal and    | wave energy.     |     |
| Principles | of bio-conversion - types of bi      | o-gas digest   | ers, gas yield,  | utilization for  |     |
| cooking, b | bio fuels, I.C. engine operation and | d economic a   | spects. Chemic   | cal Production   |     |
| of Hydrog  | gen- Electrolytic Hydrogen- Ther     | molytic Hyd    | rogen- Photoly   | tic Hydrogen-    |     |
| Photobiol  | ogic Hydrogen Production             |                |                  |                  |     |
|            |                                      |                |                  |                  |     |
| ENERGY E   | FFICIENT & GREEN MANUFACTU           | RING SYSTER    | MS               |                  |     |
| Energy ef  | ficient motors, energy efficient l   | ighting and    | control. Fuel c  | ells- principle, |     |
| thermodyr  | namic aspects, selection of fuels    | & working a    | of various types | s of fuel cells, |     |
| Environme  | ental friendly and Energy efficient  | compressor     | s and pumps.     | Environmental    |     |
| impact of  | f the current manufacturing pra      | actices and    | systems, bene    | efits of green   |     |
| manufacti  | uring systems, selection of recycla  | able and envi  | ironment friend  | ly materials in  |     |
| manufacti  | uring, Sustainable green productio   | on systems -   | alternate casti  | ng and joining   |     |
| technique  | s, zero waste manufacturing.         |                |                  |                  |     |
| Exercise 6 | : Study on the Production Process    | s of Bio-Fuels |                  |                  | 5   |
| Exercise 7 | : Study on the Floating Drum & Fix   | ed Drum Bio    | gas Plants       |                  | 5   |



| <b>Exercise 8:</b> Study on the various Bio-mass energy conservation technologies. |    |
|------------------------------------------------------------------------------------|----|
| Exercise 9: Study on Production Process of Briquettes                              |    |
| <b>Exercise 10:</b> Performance test on BIO Diesel using blend analyzer            |    |
| Revision + Assessment Test                                                         | 10 |

### Text and Reference Books:

- 1. D. S. Chauhan & amp; S. K. Srivastava, Non-Conventional Energy Resources, New Age International Private Limited, 4 th Edition, 2021.
- John Twidell & amp; Tony Weir, Renewable Energy Resources, Routledge; 3 rd Edition, 2015.
- 3. D.P. Kothari, K.C. Singal & amp; Rakesh Ranjan, Renewable Energy Sources and Emerging Technologies, PHI Learning; 3 rd Edition, 2022.
- 4. Ritu Dogra, Renewable Energy and Green Technology, Brillion Publishing, 1 st Edition, 2023.
- 5. Soli J. Arceivala, Green Technologies, McGraw Hill Education (India) Private Limited, 1 st Edition, 2017.
- Chandan Deep Singh & Harleen Kaur, Sustainable Green Development and Manufacturing Performance through Modern Production Techniques, Taylor & Francis Ltd, 1 st Edition, 2021.

#### Web and Online Resources

• https://onlinecourses.nptel.ac.in/noc21\_ch11/preview



| 1020236248 | Green Energy & Engineering | L | Т | Р | С |
|------------|----------------------------|---|---|---|---|
| PRACTICUM  |                            | 1 | 0 | 4 | 3 |

### END SEMESTER EXAMINATION - Practical Exam

### Note:

All the exercises should be completed before the Board Practical Examinations. End Semester Practical examination should be conducted for all the exercises / experiments for 100 Marks. Students will be permitted to select any one exercise by lot or question paper supplied by the DOTE Exam section shall be used. The practical document prepared by the student should be submitted with a Bonafide Certificate.

| SCHEME OF EVALUATION |
|----------------------|
|----------------------|

| PART | DESCRIPTION                    | MARKS |
|------|--------------------------------|-------|
| Α    | Aim & Apparatus Required       | 10    |
| В    | Procedure / Explanation        | 20    |
| С    | Presentation                   | 20    |
| D    | Result                         | 10    |
| E    | Written Test (Theory Portions) | 30    |
| F    | Viva Voce                      | 10    |
|      | TOTAL                          | 100   |

Note: For the written test 30 MCQ shall be asked from the theory portions.



PRACTICUM

| L | Т | Ρ | С |
|---|---|---|---|
| 1 | 0 | 4 | 3 |

## List of Equipment required.

| S.No | Name of the Equipment       | Quantity<br>required |
|------|-----------------------------|----------------------|
| 1    | Solar PV Panel              | 1                    |
| 2    | Solar Current lamp          | 2                    |
| 3    | PV analyser                 | 1                    |
| 4    | Solar Irradiation Meter     | 1                    |
| 5    | Solar Cooker                | 1                    |
| 6    | RTD - 2 mts                 | 10 Qty               |
| 7    | Solar Dryer                 | 1                    |
| 8    | Pyranometer                 | 2                    |
| 9    | Axial Fan                   | 1                    |
| 10   | Biodiesel                   | 2 lt                 |
| 11   | Biodiesel blend analyse     | 1                    |
| 12   | Solar Water Heater          | 1                    |
|      | Consumables and instruments | Sufficient           |
|      |                             | quantity             |



# Introduction

Internships in educational institutions are designed to provide students with practical experience in their field of study and to bridge the gap between academic knowledge and professional practice.

# Objectives

After completing Internship, Interns will be able to,

- Apply the theoretical knowledge and skill during performance of the tasks assigned in internship.
- Demonstrate soft skills such as time management, positive attitude and communication skills during performance of the tasks assigned in internship.
- Document the Use case on the assigned Task.
- Enable interns to apply theoretical knowledge gained in the classroom to real-world practical applications.
- Provide hands-on experience in the industrial practices.
- Develop essential skills such as communication, organization, teamwork, and problem-solving.
- Enhance specific skills related to the intern's area of focus.
- Offer a realistic understanding of the daily operations and responsibilities.
- Provide opportunities to work under the guidance of experienced supervisors and administrators.
- Allow interns to explore different career paths.
- Help interns make informed decisions about their future career goals based on first hand experience.
- Facilitate the establishment of professional relationships with supervisor, administrators, and other professionals in the field.



- Provide access to a network of contacts that can be beneficial for future job opportunities and professional growth.
- Foster personal growth by challenging interns to step out of their comfort zones and take on new responsibilities.
- Build confidence and self-efficacy through successful completion of internship tasks and projects.
- Give insight into the policies, regulations, and administrative practices.
- Allow interns to observe and understand the implementation of standards and policies in practice.
- Provide opportunities for constructive feedback from supervisors and mentors, aiding in the intern's professional development.
- Enable self-assessment and reflection on strengths, areas for improvement, and career aspirations.
- Encourage sensitivity to the needs and backgrounds of different groups, promoting inclusive and equitable industrial practices.

# **Course Outcomes**

- CO 1: Demonstrate improved skills.
- CO 2: Exhibit increased professional behavior.
- CO 3: Apply theoretical knowledge and principles in real-world practices.
- CO 4: Develop and utilize assessment tools to evaluate the learning and practices.
- CO 5: Engage in reflective practice to continually improve their learning and professional growth.

# Facilitating the Interns by an Internship Provider.

Orient intern in the new workplace. Give interns an overview of the organization, Explain the intern's duties and introduce him or her to co-workers.



| 1020236351 | Internshin | 540 Poriodo | С  |
|------------|------------|-------------|----|
| PROJECT    | internship | 5401 611003 | 12 |

Develop an internship job description with clear deliverables and timeline.

Allow the interns in meetings and provide information, resources, and opportunities for professional development.

The interns have never done this kind of work before, they want to know that their work is measuring up to organizational expectations, hence provide professional guidance and mentoring to the intern.

Daily progress report of Intern is to be evaluated by industry supervisor. examine what the intern has produced and make suggestions. Weekly supervision meetings can help to monitor the intern's work.

# **Duties Responsibilities of the Faculty Mentor**

To facilitate the placement of students for the internship

To liaison between the college and the internship provider

To assist the Industrial Training Supervisor during assessment

# Instructions to the Interns

- Students shall report to the internship provider on the 1st day as per the internship schedule.
- Intern is expected to learn about the organization, its structure, product range, market performance, working philosophy etc.
- The interns shall work on live projects assigned by the internship provider.
- The Intern shall record all the activities in the daily log book and get the signature of the concerned training supervisor.
- Intern shall have 100% attendance during internship programme. In case of unavoidable circumstances students may avail leave with prior permission from the concerned training supervisor of the respective internship provider. However, the maximum leave permitted during internship shall be as per company norms where they are working and intern shall report the leave sanctioned details to their college faculty mentor.



- The interns shall abide all the Rules and Regulations of internship provider
- Intern shall follow all the safety Regulations of internship provider.
- On completion of the internship, the intern shall report to the college and submit the internship certificate mentioning duration of internship, evaluation of interns by internship provider, Student's Diary and Comprehensive Training Report.

# Attendance Certification

Every month students have to get their attendance certified by the industrial supervisor in the prescribed form supplied to them. Students have also to put their signature on the form and submit it to the institution supervisor. Regularity in attendance and submission of report will be duly considered while awarding the Internal Assessment mark.

# Training Reports

The students have to prepare two types of reports: Weekly reports in the form of a diary to be submitted to the concerned staff in-charge of the institution. This will be reviewed while awarding Internal

# Industrial Training Diary

Students are required to maintain the record of day-to-day work done. Such a record is called Industrial training Diary. Students have to write this report regularly. All days for the week should be accounted for clearly giving attendance particulars (Presence, absence, Leave, Holidays etc.). The concern of the Industrial supervisor is to periodically check these progress reports.

# **Comprehensive Training Report**

In addition to the diary, students are required to submit a comprehensive report on training with details of the organisation where the training was undergone after attestation by the supervisors. The comprehensive report should incorporate study of plant/product/process/construction along with intensive in-depth study on any one of



| 1020236351 | Internshin | 540 Periode | С  |
|------------|------------|-------------|----|
| PROJECT    | internanip | 540 T enous | 12 |

the topics such as processes, methods, tooling, construction and equipment, highlighting aspects of quality, productivity and system. The comprehensive report should be completed in the last week of Industrial training.

Any data, drawings etc. should be incorporated with the consent of the Organisation.

# Scheme of Evaluation

# Internal Assessment

Students should be assessed for 50 Marks by industry supervisor and polytechnic faculty mentor during 8th Week and 15th Week. The total marks (50 + 50) scored shall be converted to 40 marks for the Internal Assessment.

| SI. No. | Description                                                                                      | Marks |
|---------|--------------------------------------------------------------------------------------------------|-------|
| A       | Punctuality and regularity. (Attendance)                                                         | 10    |
| В       | Level / proficiency of practical skills<br>acquired. Initiative in learning / working at<br>site | 10    |
| С       | Ability to solve practical problems. Sense of responsibility                                     | 10    |
| D       | Self expression / communication skills.<br>Interpersonal skills / Human Relation.                | 10    |
| E       | Report and Presentation.                                                                         | 10    |
|         | Total                                                                                            | 50    |



# End Semester Examination - Project Exam

Students should be assessed for 100 Marks both by the internal examiner and external examiner appointed by the Chairman Board of Examinations after the completion of internship period (Dec - May). The marks scored will be converted to 60 marks for the End Semester Examination.

| SI. No. | Description                                                                                              | Marks |
|---------|----------------------------------------------------------------------------------------------------------|-------|
| A       | Daily Activity Report.                                                                                   | 20    |
| В       | Comprehensive report on Internship, Relevant<br>Internship Certificate from the concerned<br>department. | 30    |
| С       | Presentation by the student at the end of the Internship.                                                | 30    |
| D       | Viva Voce                                                                                                | 20    |
|         | 100                                                                                                      |       |



| 1020236353 | Followship | 540 Periode | С  |
|------------|------------|-------------|----|
| PROJECT    | renowsnip  | 5401 611005 | 12 |

#### Introduction

The Fellowship in the Diploma in Engineering program is designed to provide aspiring engineers with a comprehensive educational experience that combines theoretical knowledge with practical skills. This fellowship aims to cultivate a new generation of proficient and innovative engineers who are equipped to meet the challenges of a rapidly evolving technological landscape.

Participants in this fellowship will benefit from a robust curriculum that covers core engineering principles, advanced technical training, and hands-on projects. The program emphasizes interdisciplinary learning, encouraging fellows to explore various branches of engineering, from mechanical and civil to electrical, electronics & communication and computer engineering. This approach ensures that graduates possess a versatile skill set, ready to adapt to diverse career opportunities in the engineering sector.

In addition to academics, the fellowship offers numerous opportunities for professional development. Fellows will engage with industry experts through seminars, workshops, and internships, gaining valuable insights into real-world applications of their studies. Collaborative projects and research initiatives foster a culture of innovation, critical thinking, and problem-solving, essential attributes for any successful engineer.

By offering this fellowship, participants become part of a vibrant community of learners and professionals dedicated to advancing the field of engineering. The program is committed to supporting the growth and development of each fellow, providing them with the tools and resources needed to excel both academically and professionally.

The Fellowship in the Diploma in Engineering is more than just an educational endeavor; it is a transformative journey that equips aspiring engineers with the knowledge, skills, and experiences necessary to make significant contributions to society and the engineering profession.



#### Objectives

After completing students will be able to,

- Provide fellows with a solid foundation in core engineering principles and advanced technical knowledge across various engineering disciplines.
- Equip fellows with hands-on experience through laboratory work, projects, and internships, ensuring they can apply theoretical knowledge to real-world scenarios.
- Promote interdisciplinary understanding by encouraging exploration and integration of different engineering fields, fostering versatility and adaptability in fellows.
- Encourage innovation and creativity through research projects and collaborative initiatives, enabling fellows to develop new solutions to engineering challenges.
- Facilitate professional growth through workshops, seminars, and interactions with industry experts, preparing fellows for successful careers in engineering.
- Develop critical thinking and problem-solving skills, essential for tackling complex engineering problems and making informed decisions.
- Strengthen connections between academia and industry by providing opportunities for internships, industry visits, and guest lectures from professionals.
- Foster leadership qualities and teamwork skills through group projects and collaborative activities, preparing fellows for leadership roles in their future careers.
- Instill a sense of ethical responsibility and awareness of the social impact of engineering practices, encouraging fellows to contribute positively to society.
- Promote a culture of lifelong learning, encouraging fellows to continually update their knowledge and skills in response to technological advancements and industry trends.
- Prepare fellows to work in a global engineering environment by exposing them to international best practices, standards, and cross-cultural experiences.



| 1020236353 | Fellowshin | 540 Periods | С  |
|------------|------------|-------------|----|
| PROJECT    | renowsnip  | 5401 611005 | 12 |

#### **Course Outcomes**

**CO 1:** Demonstrate a strong understanding of core engineering principles and possess the technical skills necessary to design, analyze, and implement engineering solutions across various disciplines.

**CO 2:** Apply theoretical knowledge to practical scenarios, effectively solving engineering problems through hands-on projects, laboratory work, and internships.

**CO 3:** Exhibit the ability to conduct research, develop innovative solutions, and contribute to advancements in engineering through critical thinking and creative approaches to complex challenges.

**CO 4:**Understand and adhere to professional and ethical standards in engineering practice, demonstrating responsibility, integrity, and a commitment to sustainable and socially responsible engineering.

**CO 5:** Enhance strong communication skills, both written and verbal, and be capable of working effectively in teams, demonstrating leadership and collaborative abilities in diverse and multidisciplinary environments.

#### Important points to consider to select the fellowship project.

Selecting the right fellowship project is crucial for maximizing the educational and professional benefits of a Diploma in Engineering program.

- **Relevance to Future Plans**: Choose a project that aligns with your long-term career aspirations and interests. This alignment will ensure that the skills and knowledge you gain will be directly applicable to your desired career path.
- **Industry Relevance**: Consider the current and future relevance of the project within the industry. Opt for projects that address contemporary challenges or emerging trends in engineering.
- Access to Facilities: Ensure that the necessary facilities, equipment, and materials are available to successfully complete the project. Lack of resources can hinder the progress and quality of your work.



- **Mentorship and Guidance**: Select a project that offers strong mentorship and support from experienced faculty members or industry professionals. Effective guidance is crucial for navigating complex problems and achieving project objectives.
- **Project Scope**: Assess the scope of the project to ensure it is neither too broad nor too narrow. A well-defined project scope helps in setting clear objectives and achievable milestones.
- **Feasibility**: Evaluate the feasibility of completing the project within the given timeframe and with the available resources. Consider potential challenges and ensure you have a realistic plan to address them.
- **Technical Skills**: Choose a project that allows you to develop and enhance important technical skills relevant to your field of study. Practical experience in using specific tools, technologies, or methodologies can be highly beneficial.
- **Soft Skills**: Consider projects that also offer opportunities to develop soft skills such as teamwork, communication, problem-solving, and project management.
- **Innovative Thinking**: Select a project that encourages creativity and innovative problem-solving. Projects that push the boundaries of traditional engineering approaches can be particularly rewarding.
- **Societal Impact**: Consider the potential impact of your project on society or the engineering community. Projects that address significant challenges or contribute to social good can be highly fulfilling and make a meaningful difference.

# **Guidelines to select Fellowship**

- Ensure the program is accredited by a recognized accrediting body and has a strong reputation for quality education in engineering.
- Ensure it covers core engineering principles that align with your interests and career goals.
- Investigate the qualifications and experience of the faculty mentor. Look for programs with faculty who have strong academic backgrounds, industry experience, and active involvement in research.



- Check if the program provides adequate hands-on training opportunities, such as laboratory work, workshops, and access to modern engineering facilities and equipment.
- Assess the program's connections with industry. Strong partnerships with companies can lead to valuable internship opportunities, industry projects, and exposure to real-world engineering challenges.
- Explore the availability of research opportunities. Participation in research projects can enhance your learning experience and open doors to innovative career paths.
- Look for programs that offer professional development resources, such as workshops, seminars, and networking events with industry professionals and alumni.
- Ensure the program provides robust support services, including academic advising, career counseling, mentorship programs, and assistance with job placement after graduation.
- Consider the cost of the program and available financial aid options, such as scholarships, grants, and fellowships. Evaluate the return on investment in terms of career prospects and potential earnings.
- Research the success of the program's alumni. High employment rates and successful careers of past graduates can indicate the program's effectiveness in preparing students for the engineering field.

# **Duties Responsibilities of the Faculty Mentor**

Each student should have a faculty mentor for the Institute.

- Get the approval from the Chairman Board of Examinations with the recommendations of the HOD/Principal for the topics.
- Provide comprehensive academic advising to help fellows select appropriate specializations, and research projects that align with their interests and career goals.
- Guide fellows through their research projects, offering expertise and feedback to ensure rigorous methodology, innovative approaches, and meaningful contributions to the field.
- Assist fellows in developing technical and professional skills through hands-on projects, laboratory work, and practical applications of theoretical knowledge.



- Offer career advice and support, helping fellows explore potential career paths, prepare for job searches, and connect with industry professionals and opportunities.
- Provide personal mentorship, fostering a supportive relationship that encourages growth, resilience, and a positive academic experience.
- Facilitate connections between fellows and industry professionals, alumni, and other relevant networks to enhance their professional opportunities and industry exposure.
- Ensure fellows have access to necessary resources, including research materials, lab equipment, software, and academic literature.
- Regularly monitor and evaluate the progress of fellows, providing constructive feedback and guidance to help them stay on track and achieve their goals.
- Instill and uphold high ethical and professional standards, encouraging fellows to practice integrity and responsibility in their work.
- Assist with administrative tasks related to the fellowship program, such as preparing progress reports, writing recommendation letters, and facilitating grant applications.
- Organize and participate in workshops, seminars, and other educational events that enhance the learning experience and professional development of fellows.
- Address any issues or conflicts that arise, providing mediation and support to ensure a positive and productive academic environment.

# Instructions to the Fellowship Scholar

- Regularly meet with your faculty mentor for guidance on academic progress, research projects, and career planning. Be proactive in seeking advice and support from your mentor.
- Develop strong organizational skills. Use planners, calendars, and task management tools to keep track of assignments, project deadlines, and study schedules. Prioritize tasks to manage your time efficiently.
- Take advantage of opportunities to participate in research projects and hands-on activities. These experiences are crucial for applying your theoretical knowledge and gaining practical skills.



- Focus on improving essential professional skills such as communication, teamwork, problem-solving, and leadership. Participate in workshops and seminars that enhance these competencies.
- Actively seek networking opportunities through industry events, seminars, and meetings.
  Establish connections with peers, alumni, and professionals in your field to build a strong professional network.
- Seek internships, co-op programs, or part-time jobs related to your field of study. Real-world experience is invaluable for understanding industry practices and enhancing your employability.
- Uphold high ethical standards in all your academic and professional activities. Practice integrity, honesty, and responsibility. Adhere to the ethical guidelines and standards set by your institution and the engineering profession.
- Adopt a mindset of lifelong learning. Stay updated with the latest developments and trends in engineering by reading industry journals, attending conferences, and taking additional courses.

# Documents to be submitted by the student to offer fellowship.

- **Completed Application Form**: This is typically the standard form provided by the institution or fellowship program that includes personal information, educational background, and other relevant details.
- Detailed CV/Resume: A comprehensive document outlining your educational background, knowledge experience, interest in research experience, publications, presentations, awards, and other relevant achievements if any.
- **Personal Statement**: A document explaining your motivation for applying to the fellowship, your career goals, how the fellowship aligns with those goals, and what you intend to achieve through the program.
- **Recommendation Letters**: Letters from faculty mentor, employer, or professionals who can attest to your academic abilities, professional skills, and suitability for the fellowship.



- Proposal/Description: A detailed proposal or description of the fellowship project or study you plan to undertake during the fellowship. This should include objectives, methodology, expected outcomes, and significance of the project.
- **Enrollment Verification**: Documentation verifying your current acceptance status in the academic institution or industry where the fellowship will be conducted.
- **Funding Information**: Details about any other sources of funding or financial aid you are receiving, if applicable. Some fellowships may also require a budget proposal for the intended use of the fellowship funds.
- **Samples of Work**: Copies of the relevant work that demonstrates your capabilities and accomplishments in your field.
- Endorsement Letter: A letter from your current academic institution endorsing your application for the fellowship, if required.
- Ethical Approval Documents: If your research involves human subjects or animals, you may need to submit proof of ethical approval from the relevant ethics committee.
- Additional Documents: Any other documents requested by the fellowship program required by the institution.

# **Attendance Certification**

Every month students have to get their attendance certified by the supervisor in the prescribed form supplied to them. Students have also to put their signature on the form and submit it to the faculty mentor. Regularity in attendance and submission of report will be duly considered while awarding the Internal Assessment mark.



| 1020236353 | Followship | 540 Periods | С  |
|------------|------------|-------------|----|
| PROJECT    | renowsnip  | 540 T enous | 12 |

## Rubrics for Fellowship. Review I & II.

| SI. No. | Topics                                 | Description                                                                                                                                                                                   |
|---------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | Alignment with<br>Objectives           | Assess how well the project aligns with the stated objectives and requirements.<br>Determine if the student has addressed the key aspects outlined in the project guidelines.                 |
| 2       | Depth of<br>Research:                  | Evaluate the depth and thoroughness of the literature review.<br>Assess the student's ability to identify and address gaps in existing<br>research.                                           |
| 3       | Clarity of<br>Objectives:              | Check if the student has clearly defined and articulated the objectives of the project.<br>Ensure that the objectives are specific, measurable, achievable, relevant, and time-bound (SMART). |
| 4       | Methodology<br>and Data<br>Collection: | Evaluate the appropriateness and justification of the research<br>methodology.<br>Assess the methods used for data collection and their relevance to<br>the research questions.               |
| 5       | Analysis and<br>Interpretation:        | Examine the quality of data analysis techniques used.<br>Assess the student's ability to interpret results and draw meaningful<br>conclusions.                                                |
| 6       | Project<br>Management:                 | Evaluate the project management aspects, including adherence to<br>timelines and milestones.<br>Assess the student's ability to plan and execute the project<br>effectively.                  |



| 1020236353 | – <b>Fellowship</b> 540 Periods - | С           |    |  |
|------------|-----------------------------------|-------------|----|--|
| PROJECT    | renowsnip                         | 5401 611003 | 12 |  |

| 7  | Documentation<br>and Reporting: | Check the quality of documentation, including code, experimental details, and any other relevant materials.<br>Evaluate the clarity, structure, and coherence of the final report.           |
|----|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8  | Originality and<br>Creativity:  | Assess the level of originality and creativity demonstrated in the project.<br>Determine if the student has brought a unique perspective or solution to the research problem.                |
| 9  | Critical<br>Thinking:           | Evaluate the student's critical thinking skills in analyzing information<br>and forming conclusions.<br>Assess the ability to evaluate alternative solutions and make<br>informed decisions. |
| 10 | Problem-Solving<br>Skills:      | Evaluate the student's ability to identify and solve problems<br>encountered during the project.<br>Assess adaptability and resilience in the face of challenges.                            |



| 1020236353 | Tallawakin | 540 Periode | С  |
|------------|------------|-------------|----|
| PROJECT    | renowsnip  | 540 T enous | 12 |

# **INTERNAL MARKS - 40 Marks**

As per the rubrics each topic should be considered for the Review I and Review II. Equal weightage should be given for all the topics. It should be assessed by a faculty mentor and the industrial professional or research guide.

Review 1 shall be conducted after 8th week and Review 2 shall be conducted after 14th week in the semester. Average marks scored in the reviews shall be considered for the internal assessment of 30 Marks.

| PART | DESCRIPTION                    | MARKS |
|------|--------------------------------|-------|
| Α    | Assessment as per the rubrics. | 30    |
| В    | Attendance                     | 10    |
|      | Total                          | 40    |

### Scheme of Evaluation



PROJECT

### **END SEMESTER EXAMINATION - Project Exam**

Students should be assessed for 100 Marks both by the internal examiner and external examiner appointed by the Chairman Board of Examinations after the completion of fellowship. The marks scored will be converted to 60 marks for the End Semester Examination.

| Sl. No. | Description                                     | Marks |
|---------|-------------------------------------------------|-------|
| А       | Daily Activity Report.                          | 20    |
| В       | Comprehensive report of the Fellowship<br>Work. | 30    |
| С       | Presentation by the student.                    | 30    |
| D       | Viva Voce                                       | 20    |
|         | 100                                             |       |



PROJECT

#### Introduction

Every student must do one major project in the Final year of their program. Students can do their major project in Industry or R&D Lab or in-house or a combination of any two for the partial fulfillment for the award of Diploma in Engineering.

For the project works, the Department will constitute a three-member faculty committee to monitor the progress of the project and conduct reviews regularly.

If the projects are done in-house, the students must obtain the bonafide certificate for project work from the Project supervisor and Head of the Department, at the end of the semester. Students who have not obtained the bonafide certificate are not permitted to appear for the Project Viva Voce examination.

For the projects carried out in Industry, the students must submit a separate certificate from Industry apart from the regular bonafide certificate mentioned above. For Industry related projects there must be one internal faculty advisor / Supervisor from Industry (External), this is in addition to the regular faculty supervision.

The final examination for project work will be evaluated based on the final report submitted by the project group **of not exceeding four students**, and the viva voce by an external examiner.

#### Objectives

Academic project work plays a crucial role in the education of Diploma in Engineering students, as it helps them apply theoretical knowledge to practical situations and prepares them for real-world engineering challenges.

- Integration of Knowledge: Consolidate and integrate theoretical knowledge acquired in coursework to solve practical engineering problems.
- **Skill Development**: Enhance technical skills related to the specific field of engineering through hands-on experience and application.
- **Problem-Solving Abilities**: Develop critical thinking and problem-solving abilities by addressing complex engineering issues within a defined scope.



С

12

- **Project Management**: Gain experience in project planning, execution, and management, including setting objectives, timelines, and resource allocation.
- **Teamwork and Collaboration**: Foster teamwork and collaboration by working in multidisciplinary teams to achieve project goals and objectives.
- **Research Skills**: Acquire research skills by conducting literature reviews, gathering relevant data, and applying research methodologies to investigate engineering problems.
- **Innovation and Creativity**: Encourage innovation and creativity in proposing and developing engineering solutions that may be novel or improve upon existing methods.
- **Communication Skills**: Improve communication skills, both oral and written, by presenting project findings, writing technical reports, and effectively conveying ideas to stakeholders.
- Ethical Considerations: Consider ethical implications related to engineering practices, including safety, environmental impact, and societal concerns.
- **Professional Development**: Prepare for future professional roles by demonstrating professionalism, initiative, and responsibility throughout the project lifecycle.

#### **Course Outcomes**

**CO 1:** Demonstrate the ability to apply theoretical concepts and principles learned in coursework to solve practical engineering problems encountered during the project.

**CO 2:** Develop and enhance technical skills specific to the field of engineering relevant to the project, such as design, analysis, simulation, construction, testing, and implementation.

**CO 3:** Apply critical thinking and problem-solving skills to identify, analyze, and propose solutions to engineering challenges encountered throughout the project lifecycle.

**CO 4:** Acquire project management skills by effectively planning, organizing, and executing project tasks within defined timelines and resource constraints.

**CO 5:** Improve communication skills through the preparation and delivery of project reports, presentations, and documentation that effectively convey technical information to stakeholders.



### Important points to consider to select the In-house project.

- Selecting a project work in Diploma Engineering is a significant decision that can greatly influence your learning experience and future career prospects.
- Choose a project that aligns with your career aspirations and interests within the field of engineering. Consider how the project can contribute to your professional development and future opportunities.
- Ensure the project aligns with your coursework and specialization within the Diploma program. It should complement and build upon the knowledge and skills you have acquired in your studies.
- Evaluate the scope of the project to ensure it is manageable within the given timeframe, resources, and constraints. Avoid projects that are overly ambitious or impractical to complete effectively.
- Assess the availability of resources needed to conduct the project, such as equipment, materials, laboratory facilities, and access to relevant software or tools. Lack of resources can hinder project progress.
- Select a project that genuinely interests and motivates you. A project that captures your curiosity and passion will keep you engaged and committed throughout the project duration.
- Consider the availability and expertise of faculty advisors or industry mentors who can provide guidance and support throughout the project. Effective mentorship is crucial for success.
- Clearly define the learning objectives and expected outcomes of the project. Ensure that the project will help you achieve specific learning goals related to technical skills, problem-solving, and professional development.
- Look for opportunities to propose innovative solutions or explore new methodologies within your project. Projects that encourage creativity can set you apart and enhance your learning experience.



PROJECT

С

12

- Consider ethical implications related to the project, such as safety protocols, environmental impact, and compliance with ethical guidelines in research and engineering practices.
- Evaluate whether the project offers opportunities for collaboration with peers, experts from other disciplines, or industry partners. Interdisciplinary projects can broaden your perspective and enhance your teamwork skills.
- Consider the potential impact of your project on society or the engineering community.
  Projects that address significant challenges or contribute to social good can be highly fulfilling and make a meaningful difference.

By carefully considering these points, Diploma Engineering students can make informed decisions when selecting project work that not only enhances their academic learning but also prepares them for successful careers in engineering.

## Duties Responsibilities of the internal faculty advisor.

Each group should have an internal faculty advisor assigned by the HOD/Principal.

- The in-house project should be approved by the project monitoring committee constituted by the Chairman Board of Examinations.
- The in-house project should be selected in the fifth semester itself. Each in-house project shall have a maximum of four students in the project group.
- Provide comprehensive academic advising to help in the selection of appropriate in-house project that align with their interests and career goals.
- Offer expertise and feedback to ensure rigorous methodology, innovative approaches, and meaningful contributions to the field.
- Assist in developing technical and professional skills through hands-on projects, laboratory work, and practical applications of theoretical knowledge.
- Provide personal mentorship, fostering a supportive relationship that encourages growth, resilience, and a positive academic experience.
- Facilitate connections between students and industry professionals, alumni, and other relevant networks to enhance their professional opportunities and industry exposure.



PROJECT

- Ensure students have access to necessary resources, including research materials, lab equipment, software, and academic literature.
- Regularly monitor and evaluate the progress of the in-house project, providing constructive feedback and guidance to help them stay on track and achieve their goals.
- Instill and uphold high ethical and professional standards, encouraging students to practice integrity and responsibility in their work.
- Assist in preparing progress reports, writing recommendation letters, and facilitating grant applications.
- Organize and participate in workshops, seminars, and other educational events that enhance the learning experience and professional development.
- Address any issues or conflicts that arise, providing mediation and support to ensure a positive and productive academic environment.

### Instructions to the students.

- Regularly meet with your internal faculty advisor for guidance on academic progress, research projects, and career planning. Be proactive in seeking advice and support from your faculty advisor.
- Use planners, calendars, and task management tools to keep track of assignments, project deadlines, and study schedules. Prioritize tasks to manage your time efficiently.
- Take advantage of opportunities to participate in in-house projects and hands-on activities. These experiences are crucial for applying your theoretical knowledge and gaining practical skills.
- Focus on improving essential professional skills such as communication, teamwork, problem-solving, and leadership. Participate in workshops and seminars that enhance these competencies.
- Actively seek networking opportunities through industry events, seminars, and meetings.
  Establish connections with peers, alumni, and professionals in your field to build a strong professional network.



- Seek internships, co-op programs, or part-time jobs related to your field of study. Real-world experience is invaluable for understanding industry practices and enhancing your employability.
- Uphold high ethical standards in all your academic and professional activities. Practice integrity, honesty, and responsibility. Adhere to the ethical guidelines and standards set by your institution and the engineering profession.
- Adopt a mindset of lifelong learning. Stay updated with the latest developments and trends in engineering by reading industry journals, attending conferences, and taking additional courses.

# Documents to be submitted by the student for an in-house project.

Submit a printed report of your in-house project work along with the fabrication model / analysis report for the End Semester Examination.

| SI. No. | Topics                             | Description                                                                                                            |  |
|---------|------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| 1       | Objectives                         | Clearly defined and specific objectives outlined.<br>Objectives align with the project's scope and purpose.            |  |
| 2       | Literature Review                  | Thorough review of relevant literature.<br>Identification of gaps and justification for the project's<br>contribution. |  |
| 3       | Research Design and<br>Methodology | Clear explanation of the research design.<br>Appropriateness and justification of chosen research<br>methods.          |  |



| 1020236374 | In-house Project | 540 Periods | С  |
|------------|------------------|-------------|----|
| PROJECT    |                  |             | 12 |

| 4  | Project Management                | Adherence to project timeline and milestones.<br>Effective organization and planning evident in the project<br>execution.                       |
|----|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | Documentation                     | Comprehensive documentation of project details.<br>Clarity and completeness in recording methods, results, and<br>challenges.                   |
| 6  | Presentation Skills               | Clear and articulate communication of project findings.<br>Effective use of visuals, if applicable.                                             |
| 7  | Analysis and<br>Interpretation    | In-depth analysis of data.<br>Clear interpretation of results in the context of research<br>questions.                                          |
| 8  | Problem-Solving                   | Demonstrated ability to identify and address challenges<br>encountered during the project.<br>Innovative solutions considered where applicable. |
| 9  | Professionalism and<br>Compliance | Adherence to ethical standards in research.<br>Compliance with project guidelines and requirements.                                             |
| 10 | Quality of Work                   | Overall quality and contribution of the project to the field.<br>Demonstrated effort to produce high-quality work.                              |

### SCHEME OF EVALUATION

The mark allocation for Internal and End Semester Viva Voce are as below.

| Internal Marks (40 Marks)* |                       |                       |  |  |
|----------------------------|-----------------------|-----------------------|--|--|
| Review 1                   | Review 2              | Review 3              |  |  |
| (10 Marks)                 | (15 Marks)            | (15 marks)            |  |  |
| Committee: 5 Marks.        | Committee: 7.5 Marks  | Committee: 7.5 Marks  |  |  |
| Supervisor: 5 Marks        | Supervisor: 7.5 Marks | Supervisor: 7.5 Marks |  |  |

Note: \* The rubrics should be followed for the evaluation of the internal marks during reviews.


PROJECT

## **END SEMESTER EXAMINATION - Project Exam**

The performance of each student in the project group would be evaluated in a viva voce examination conducted by a committee consisting of an external examiner and the project supervisor and an internal examiner.

| End Semester (100) <sup>#</sup>              |                                              |                                              |                                                |
|----------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------|
| Record<br>(20 Marks)                         | Presentation<br>(20 Marks)                   | Viva Voce<br>(20 Marks)                      | Model / Analysis<br>Report<br>(40 Marks)       |
| External: 10<br>Internal: 5<br>Supervisor: 5 | External: 10<br>Internal: 5<br>Supervisor: 5 | External: 10<br>Internal: 5<br>Supervisor: 5 | External: 20<br>Internal: 10<br>Supervisor: 10 |

<sup>#</sup> The marks scored will be converted to 60 Marks.



| 2020234274 |                          |             | С  |
|------------|--------------------------|-------------|----|
| 2020237274 | Industrial Training (SW) | 540 Periods |    |
| PROJECT    |                          |             | 12 |

### Introduction

The main objective of the sandwich Diploma course is to mould a well-rounded technician acclimated with the industrial environment while being a student in the institution. The Sandwich Diploma Course study is pursued by students, in 7 Semesters of 3 ½ years duration, the subjects of 3 years-Full Time Diploma Course being regrouped for academic convenience. While in the 4th semester students undergo Industrial Training for 6 months (December through May). They also do course work in the institution for one day in a week, While in the 7th semester they undergo another spell of 6 months (June through November) Industrial training. The Apprenticeship (Amendment) Act 1973 is followed in regulating the Industrial training procedure for Sandwich Course.

### **Objectives**

The main objective of industrial training for a diploma engineer is to provide practical, hands-on experience in real-world industrial settings, bridging the gap between academic learning and professional practice. This training aims to equip students with the skills, knowledge, and competencies required to effectively perform and succeed in the mechanical engineering industry.

Key aspects of this objective include:

- Enable students to apply the concepts and principles learned in the classroom to real-world engineering problems and scenarios.
- Develop essential technical skills.
- Enhance soft skills like communication, teamwork, problem-solving, and time management.
- Provide exposure to industrial machinery, tools, and equipment, along with the operational procedures and safety practices in a manufacturing or engineering environment.
- Offer insights into the daily operations and responsibilities of technicians, preparing students for the transition from academic settings to professional work environments.



- Educate students on industry standards, quality control measures, and best practices in mechanical engineering and manufacturing processes.
- Help students explore various career paths within mechanical engineering, enabling them to make informed decisions about their future professional goals.
- Provide opportunities for networking with industry professionals and potential employers.
- Encourage creative thinking and innovation by challenging students to solve real-world engineering problems and improve existing processes or products.
- Instill a sense of professionalism, work ethics, and responsibility required in the engineering field.

# **Course Outcomes**

CO 1: Demonstrate proficiency in using industrial machinery, tools, and software.

CO 2: Able to identify, analyze, and solve engineering problems using industry-standard methods and practices.

CO 3: Gain a comprehensive understanding of industrial manufacturing processes, quality control, and safety practices.

CO 4: Exhibit improved communication, teamwork, and professional behavior in an industrial setting.

CO 5: Apply theoretical concepts learned in their coursework to practical engineering tasks and projects.

# Duties Responsibilities of the Faculty Mentor.

Faculty mentors play a crucial role in overseeing and guiding students during their industrial training program in Diploma engineering.



### Pre-Training Responsibilities:

- 1. Orientation and Preparation:
  - Conduct orientation sessions to familiarize students with the objectives, expectations, and guidelines of the industrial training program.
  - Assist students in understanding the importance of industrial training in their academic and professional development.
- 2. Placement Coordination:
  - Collaborate with the placement cell or industry liaison office to secure suitable training placements for students that align with their academic specialization and career interests.
  - Facilitate communication between the institution and host organizations to ensure smooth coordination of training arrangements.
- 3. Training Plan Development:
  - Help students develop a detailed training plan outlining learning objectives, tasks, and expected outcomes for the training period.
  - Guide students in setting SMART (Specific, Measurable, Achievable, Relevant, Time-bound) goals for their training experience.

## **During Training Responsibilities:**

- 4. Monitoring and Support:
  - Regularly monitor the progress of students during their industrial training.
    Maintain communication with both students and industry supervisors to track performance and address any issues that may arise.
  - Provide ongoing support and guidance to students, offering advice on technical challenges, professional conduct, and workplace etiquette.
- 5. Technical Guidance:
  - Offer technical guidance and mentorship related to the specific engineering discipline or specialization of the students. Help them apply theoretical knowledge to practical situations encountered in the industry.



- 6. Problem-Solving Assistance:
  - Assist students in overcoming obstacles or challenges encountered during their training. Encourage them to develop problem-solving skills and resilience in real-world engineering scenarios.
- 7. Feedback and Evaluation:
  - Provide constructive feedback on students' performance based on reports, assessments, and observations gathered from industry supervisors.
  - Evaluate students' achievements in relation to their training objectives and competencies developed during the program.

## **Post-Training Responsibilities:**

- 8. Reflection and Debriefing:
  - Conduct debriefing sessions with students to reflect on their training experiences, discuss lessons learned, and identify areas for further improvement.
  - Help students articulate their learning outcomes and how these experiences contribute to their professional growth.
- 9. Documentation and Reporting:
  - Ensure comprehensive documentation of students' training activities, achievements, and feedback received from industry supervisors.
  - Prepare reports summarizing students' performance and submit these to relevant departments or committees for review and assessment.
- 10. Career Counseling:
  - Provide career guidance and counseling to students based on their industrial training experiences. Assist them in leveraging these experiences for future job applications or further academic pursuits.
- 11. Continuous Improvement:
  - Collaborate with industry partners to continuously improve the quality and relevance of the industrial training program.



| 2020234274<br>2020237274 | Industrial Training (SW) | 540 Periods | С  |
|--------------------------|--------------------------|-------------|----|
| PROJECT                  |                          |             | 12 |

 Incorporate feedback from students and industry supervisors to enhance the effectiveness of future training placements.

By fulfilling these duties and responsibilities, faculty mentors contribute significantly to the overall educational experience and professional development of Diploma engineering students during their industrial training program.

## Instructions to the students

Here are some instructions for Diploma engineering students undergoing industrial training during their academic duration:

# **Before Starting Industrial Training:**

- 1. Orientation and Preparation:
  - Attend orientation sessions conducted by the institution or faculty mentors to understand the objectives, expectations, and guidelines of the industrial training program.
  - Familiarize yourself with the specific policies, procedures, and safety regulations of the host organization where you will be undergoing training.
- 2. Setting Goals:
  - Set clear and specific goals for your industrial training period. Define what skills, knowledge, and experiences you aim to gain during this time.
  - Discuss your goals with your faculty mentor and seek their guidance in developing a training plan that aligns with your career aspirations.
- 3. Professional Attire and Conduct:
  - Dress appropriately and professionally according to the standards of the industry and host organization.
  - Maintain a positive attitude, demonstrate punctuality, and adhere to workplace etiquette and norms.



### During Industrial Training:

- 4. Learning and Engagement:
  - Actively engage in all assigned tasks and projects. Seek opportunities to learn new skills and technologies relevant to your field of study.
  - Take initiative in asking questions, seeking clarification, and participating in discussions with supervisors and colleagues.
- 5. Adaptability and Flexibility:
  - Adapt to the work environment and demonstrate flexibility in handling various responsibilities and challenges that arise during your training.
  - Be open to different roles and tasks assigned to you, as this will broaden your experience and skill set.
- 6. Professionalism and Communication:
  - Communicate effectively with supervisors, colleagues, and clients as required.
    Practice clear and concise verbal and written communication.
  - Demonstrate professionalism in all interactions, respecting confidentiality, and adhering to company policies and procedures.
- 7. Safety and Compliance:
  - Prioritize safety at all times. Familiarize yourself with safety protocols, procedures, and emergency exits in the workplace.
  - Follow all safety guidelines and regulations to ensure your well-being and that of others around you.

## After Completing Industrial Training:

- 8. Reflection and Documentation:
  - Reflect on your training experience. Evaluate what you have learned, the challenges you faced, and how you have grown professionally.
  - Maintain a journal or log documenting your daily activities, achievements, and lessons learned during the training period.



- 9. Feedback and Evaluation:
  - Seek feedback from your industry supervisor and faculty mentor on your performance and areas for improvement.
  - Use constructive feedback to enhance your skills and competencies for future career opportunities.
- 10. Career Planning:
  - Use your industrial training experience to inform your career planning and decision-making process.
  - Discuss your career goals and aspirations with your faculty mentor or career counselor for guidance on next steps after completing your diploma.

By following these instructions, Diploma engineering students can make the most of their industrial training experience, gain valuable insights into their chosen field, and prepare themselves effectively for future professional endeavors.

### Attendance Certification

Every month students have to get their attendance certified by the industrial supervisor in the prescribed form supplied to them. Students have also to put their signature on the form and submit it to the institution supervisor. Regularity in attendance and submission of report will be duly considered while awarding the Internal Assessment mark.

### **Training Reports**

The students have to prepare two types of reports: Weekly reports in the form of a diary to be submitted to the concerned faculty mentor of the institution. This will be reviewed while awarding Internal assessment. The details of the activity during the training will be monitored by the Faculty mentor through the faculty advisor and student.

The feedback shall be given to the HOD / Principal for further necessary action.



| 2020234274<br>2020237274 | Industrial Training (SW) | 540 Periods | С  |
|--------------------------|--------------------------|-------------|----|
| PROJECT                  |                          |             | 12 |

## **Industrial Training Diary**

Students are required to maintain the record of day-to-day work done. Such a record is called Industrial training Diary. Students have to write this report regularly. All days for the week should be accounted for clearly giving attendance particulars (Presence, absence, Leave, Holidays etc.). The concern of the Industrial supervisor is to periodically check these progress reports.

### **Comprehensive Training Report**

In addition to the diary, students are required to submit a comprehensive report on training with details of the organisation where the training was undergone after attestation by the supervisors. The comprehensive report should incorporate study of plant / product / process / construction along with intensive in-depth study on any one of the topics such as processes, methods, tooling, construction and equipment, highlighting aspects of quality, productivity and system. The comprehensive report should be completed in the last week of Industrial training. Any data, drawings etc. should be incorporated with the consent of the Organisation.



| 2020234274 |                          |             | С  |
|------------|--------------------------|-------------|----|
| 2020237274 | Industrial Training (SW) | 540 Periods |    |
| PROJECT    |                          |             | 12 |

## Scheme of Evaluation

## Internal Assessment

Students should be assessed for 40 Marks by industry supervisor and polytechnic faculty mentor during 3rd Month and 5th Month. The total marks (40 + 40) scored shall be converted to 40 marks for the Internal Assessment.

| SI. No. | Description                                                                                   | Marks |
|---------|-----------------------------------------------------------------------------------------------|-------|
| A       | Punctuality and regularity. (Attendance)                                                      | 10    |
| В       | Level / proficiency of practical skills acquired.<br>Initiative in learning / working at site | 10    |
| С       | Self expression / communication skills.<br>Interpersonal skills / Human Relation.             | 10    |
| D       | Report and Presentation.                                                                      | 10    |
| Total   |                                                                                               | 40    |



### End Semester Examination - Project Exam

Students should be assessed for 100 Marks both by the internal examiner and external examiner appointed by the Chairman Board of Examinations after the completion of internship period of six months. The marks scored will be converted to 60 marks for the End Semester Examination.

| SI. No. | Description                                                                                              | Marks |
|---------|----------------------------------------------------------------------------------------------------------|-------|
| A       | Daily Activity Report.                                                                                   | 20    |
| В       | Comprehensive report on Internship, Relevant<br>Internship Certificate from the concerned<br>department. | 30    |
| С       | Presentation by the student at the end of the Internship.                                                | 30    |
| D       | Viva Voce                                                                                                | 20    |
| Total   |                                                                                                          | 100   |

